切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2025, Vol. 15 ›› Issue (01) : 27 -32. doi: 10.3877/cma.j.issn.2095-2007.2025.01.005

论著

模拟户外光照的全光谱动态光源对豚鼠眼屈光发育影响的实验研究
李文涛1,, 赵峰2, 陈彦霓1, 文勇强1, 魏丽云1, 张润妹1, 赵敏1, 杨子颖1, 廖锐1   
  1. 1. 516002 惠州市第三人民医院眼科广州医科大学附属惠州医院
    2. 516060 广州,中山大学中山眼科中心眼科学国家重点实验室
  • 收稿日期:2024-11-12 出版日期:2025-02-28
  • 通信作者: 李文涛
  • 基金资助:
    广东省自然科学基金项目(2017A030310344)惠州市科技计划重点项目(2023CZ010009)

Effect of dynam ic full spectrum light on myopia development in guinea pigs

Wentao Li1,, Feng Zhao2, Yanni Chen1, Yongqiang Wen1, Liyun Wei1, Runmei Zhang1, Min Zhao1, Ziying Yang1, Rui Liao1   

  1. 1. Department of Ophthalmology, Huizhou Third People′s Hospital, Guangzhou Medical University,Huizhou 516002,China
    2. State Key Laboratory of Ophthalmology,Zhongshan Ophthalmic Center,Sun Yatsen University,Guangzhou 510060,China
  • Received:2024-11-12 Published:2025-02-28
  • Corresponding author: Wentao Li
引用本文:

李文涛, 赵峰, 陈彦霓, 文勇强, 魏丽云, 张润妹, 赵敏, 杨子颖, 廖锐. 模拟户外光照的全光谱动态光源对豚鼠眼屈光发育影响的实验研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(01): 27-32.

Wentao Li, Feng Zhao, Yanni Chen, Yongqiang Wen, Liyun Wei, Runmei Zhang, Min Zhao, Ziying Yang, Rui Liao. Effect of dynam ic full spectrum light on myopia development in guinea pigs[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2025, 15(01): 27-32.

目的

观察模拟户外光照的全光谱动态光源对豚鼠透镜诱导性近视眼屈光发育的影响。

方法

选取1周龄,体质量≤100 g英国种三色豚鼠57只,采用数字表法随机将其分为持续照明组、低频变化组及高频变化组。采用全光谱Solux光源模拟户外光照,并通过电子调控设备实现光照强度以余弦方式动态波动。持续照明组接受光照强度为8000 lux照射,低频变化组接受光照强度为500~8000 lux,变化频率为10 min/0.05 Hz;高频变化组接受光照强度为500~8000 lux,变化频率为20 s/0.002 Hz。所有豚鼠均双眼配戴-6.00 D透镜,分别于实验前后3周测量豚鼠眼的屈光度、前房深度、晶状体厚度、玻璃体腔长度及眼轴长度等眼球生物参数变化。屈光度、前房深度、晶状体厚度、玻璃体深度及眼轴长度均符合正态分布,采用¯x±s描述,组间比较采用方差分析。实验前后眼部参数的变化采用配对t检验,不同光照模式的眼部参数实验前后的变化采用t检验。

结果

实验前,持续照明组、低频变化组及高频变化豚鼠眼屈光度分别为(3.55±0.53)D、(3.66±0.58)D及(3.49±0.49)D,组间比较差异无统计学意义(F=0.69,P>0.05)。实验前,持续照明组豚鼠前房深度、晶状体厚度、玻璃体腔长度及眼轴长度分别为(1.09±0.05)mm、(2.46±0.14)mm、(3.40±0.18)mm及(7.23±0.09)mm;低频变化组分别为(1.08±0.05)mm、(2.47±0.15)mm、(3.41±0.19)mm及(7.18±0.08)mm;高频变化组分别为(1.11±0.04)mm、(2.49±0.15)mm、(3.44±0.16)mm及(7.23±0.09)mm。组间比较的差异无统计学意义(F=1.22,0.36,0.19,2.10;P>0.05)。实验3周后,低频变化组豚鼠眼屈光度较实验前增加(-2.43±0.68)D,高频照明组增加(-1.34±0.91)D,持续照明组增加(-1.62±0.95)D。其中,高频变化组较实验前增加最少,持续照明组和低频变化组次之。与低频变化组相比,高频变化组豚鼠眼屈光度呈相对性远视状态,两组豚鼠屈光度变化的比较差异有统计学意义(t=-4.35,P<0.05)。各组间豚鼠眼晶状体厚度、眼轴长度、前房深度及玻璃体腔长度实验前后变化的比较差异无统计学意义(F=0.32,2.10,1.05,1.10;P>0.05)。

结论

高频变化的动态Solux光照能有效地减缓豚鼠透镜诱导性近视眼的进展。但与持续照明相比,高频动态变化近视眼保护作用无强度依赖性。

Objective

The aim of this study is to observe the effect of dynamic full spectrum light onmyopia progression of lens-induced guinea pigs.

Methods

Fifty seven one week old British trichrome guinea pigs weighing≤100 g were randomly divided into continuous illumination group(18 guinea pigs),low-frequency change group(20 guinea pigs)and high-frequency change group(19 guinea pigs).The full spectrum SoLux light source was used to simulate outdoor lighting,and the light intensity was dynamically fluctuated in a cosine manner through electronic control equipment.The continuous illumination group received light intensity of 8000 lux,and the low-frequency change group received light intensity of 500 to 8000 lux,with a change frequency of 10 min/0.05 Hz.The high-frequency change group was exposed to 500 to8000 luxwith a frequency of20 s/0.002 Hz.All guinea pigswere equipped with-6.00 D lenses in both eyes.The changes of ocular biological parameters such as diopter,anterior chamber depth,lens thickness,vitreous cavity length,and axial length were measured before and 3 weeks after the experiment.Diopter,anterior chamber depth,lens thickness,vitreous depth and axial length were all in linewith normal distribution,and described by(¯x±s),and performed with analysis of variance between groups.The changes of eye parameters before and after the experimentwere detected by paired t-test,and the changes of eye parameters between groups with different light modes or dynamic light sources with different change frequencies were compared by t test.

Results

Before the experiment,refractive error of the constant lighting group was(3.55±0.53)D.The low frequency dynamic light group was(3.66±0.58)D and the high frequency dynamic light group was(3.49±0.49)D.There was no difference in refractive error among all groups.After3 weeks treatment,all the groups of guinea pigs developedmyopia.The low frequency dynamic light group developed tomyopia by(-2.43±0.68)D,followed by constant lighting group(-1.62±0.95)D.Before the experiment,the visual acuity of guinea pigs in the continuous illumination group,lowfrequency variation group,and high-frequency variation group were(3.55±0.53)D,(3.66±0.58)D,and(3.49±0.49)D,respectively.There was no statistically significant difference between the groups(F=0.69,P>0.05).Before the experiment,the anterior chamber depth,lens thickness,vitreous cavity length,and axial length of the guinea pigs in the continuous lighting group were(1.09±0.05)mm,(2.46±0.14)mm,(3.40±0.18)mm,and(7.23±0.09)mm,respectively.The low-frequency variation groups were(1.08±0.05)mm,(2.47±0.15)mm,(3.41±0.19)mm,and(7.18±0.08)mm,respectively.The high-frequency change groups were(1.11±0.04)mm,(2.49±0.15)mm,(3.44±0.16)mm,and(7.23±0.09)mm,respectively.There was no statistically significant difference in the biological parameters of guinea pig eyeballs between groups(F=1.22,0.36,0.19,2.10;P>0.05).After 3 weeks of experimental treatment,the refractive power of guinea pigs in the low-frequency change group increased by(-2.43±0.68)D compared to before the experiment,the highfrequency illumination group increased by(-1.34±0.91)D,and the continuous illumination group increased by(-1.62±0.95)D.The high-frequency variation group showed the least increase compared to before the experiment,followed by the continuous illumination group and the low-frequency variation group.Compared with the low-frequency change group,the high-frequency change group of guinea pigs showed a relative hyperopia state in terms of refractive power,and the difference in refractive power changes between the two groups of guinea pigs was statistically significant(t=-4.35,P<0.05).There was no statistically significant difference in the changes of lens thickness,axial length,anterior chamber depth,and vitreous cavity length among the groups of guinea pigs(F=0.32,2.10,1.05,1.10;P>0.05).

Conclusions

High frequency dynamic illumination can effectively slow down the progression of lens-induced myopia in guinea pigs.However,compared with constant lighting,high frequency dynamic lighting did not show greater protective effect againstmyopia.The results of this experiment need further research and exploration.

图1 全光谱Solux灯光谱图
表1 不同光照强度下豚鼠实验前后眼部生物学参数的比较(¯x±s
分组 眼数(只眼) 实验前
屈光度(D) 前房深度(mm) 晶状体厚度(mm) 玻璃体深度(mm) 眼轴长度(mm)
持续照明组 19 3.55±0.53 1.09±0.05 2.46±0.14 3.40±0.18 7.23±0.09
低频变化组 21 3.66±0.58 1.08±0.05 2.47±0.15 3.41±0.19 7.18±0.08
高频变化组 20 3.49±0.49 1.11±0.04 2.49±0.15 3.44±0.16 7.23±0.09
0.69 1.22 0.36 0.19 2.10
>0.05 >0.05 >0.05 >0.05 >0.05
分组 眼数(只眼) 实验1周后
屈光度(D) 前房深度(mm) 晶状体厚度(mm) 玻璃体深度(mm) 眼轴长度(mm)
持续照明组 19 2.96±0.39 1.10±0.04 2.60±0.14 3.55±0.26 7.66±0.15
低频变化组 21 2.79±0.68 1.12±0.04 2.60±0.14 3.55±0.18 7.59±0.09
高频变化组 20 2.97±0.39 1.09±0.06 2.61±0.14 3.57±0.25 7.66±0.15
0.71 0.80 0.01 0.07 2.40
>0.05 >0.05 >0.05 >0.05 >0.05
分组 眼数(只眼) 实验2周后
屈光度(D) 前房深度(mm) 晶状体厚度(mm) 玻璃体深度(mm) 眼轴长度(mm)
持续照明组 19 2.54±0.77 1.10±0.05 2.70±0.12 3.57±0.20 7.77±0.14
低频变化组 21 1.76±0.57 1.12±0.05 2.68±0.15 3.63±0.21 7.75±0.11
高频变化组 20 2.33±0.79 1.10±0.04 2.72±0.14 3.66±0.18 7.74±0.14
9.88 0.64 0.14 1.21 0.17
<0.05 >0.05 >0.05 >0.05 >0.05
分组 眼数(只眼) 实验3周后
屈光度(D) 前房深度(mm) 晶状体厚度(mm) 玻璃体深度(mm) 眼轴长度(mm)
持续照明组 19 1.94±0.90 1.11±0.06 2.84±0.17 3.89±0.24 7.95±0.10
低频变化组 21 1.26±0.48 1.11±0.05 2.82±0.16 3.98±0.19 7.99±0.09
高频变化组 20 2.16±0.88 1.10±0.05 2.85±0.18 3.88±0.23 7.91±0.10
7.52 0.44 0.08 1.47 1.56
<0.05 >0.05 >0.05 >0.05 >0.05
分组 眼数(只眼) 实验前后变化量
屈光度(D) 前房深度(mm) 晶状体厚度(mm) 玻璃体深度(mm) 眼轴长度(mm)
持续照明组 19 -1.62±0.95 0.02±0.06 0.39±0.19 0.47±0.26 0.72±0.13
低频变化组 21 -2.43±0.68 0.00±0.07 0.36±0.24 0.54±0.31 0.77±0.12
高频变化组 20 -1.34±0.91 0.00±0.06 0.37±0.26 0.45±0.25 0.73±0.14
9.14 1.05 0.32 1.10 2.10
<0.05 >0.05 >0.05 >0.05 >0.05
图2 不同光照强度下豚鼠眼屈光度变化的柱状图
[1]
Landis EG,Park HN,Chrenek M,et al.Ambient light regulates retinal dopamine signaling and myopia susceptibility[J].Invest Ophthalmol Vis Sci,2021,62(1):28.
[2]
He X,Sankaridurg P,Wang J,et al.Time outdoors in reducing myopia:a school-based cluster randomized trial with objective monitoring of outdoor time and light intensity[J].Ophthalmology,2022,129(11):1245-1254.
[3]
Muralidharan AR,Lança CA,Biswas S,et al.Light and myopia: from epidemiological studies to neurobiological mechanisms [J]. Ther Adv Ophthalmol, 2021,PMID:34988370.
[4]
Sarfare S,Yang J,Nickla DL.The effects of brief high intensity light on ocular growth in chicks developingmyopia vary with time of day[J].Exp Eye Res,2020,195:108039.
[5]
Lan W,Feldkaemper M,Schaeffel F.Intermittent episodes of bright light suppressmyopia in the chicken more than continuous bright light[J].PLoSOne,2014,9(10):e110906.
[6]
Gregory L,Gregory L,Christopher T,et al.Effect of duration and temporal modulation, of monochromatic light on emmetropization in chicks[J].Vision Res,2020,166:12-19.
[7]
Rucker F,Henriksen M,Yanase T,et al.The role of temporal contrastand blue light in emmetropization[J].Vision Res,2018,151:78-87.
[8]
Eppenberger LS,Sturm V.The Role of time exposed to outdoor light for myopia prevalence and progression:a literature review[J].Clin Ophthalmol,2020,14:1875-1890.
[9]
Mei Z,Zhang Y,JiangW,etal.Efficacy of outdoor interventions formyopia in children and adolescents:a systematic review and meta-analysis of randomized controlled trials[J].Front Public Health,2024,12:1452567.
[10]
LiW,Lan W,Yang S,et al.The effect of spectral property and intensity of light on natural refractive development and compensation to negative lenses in guinea pigs[J].Invest Ophthalmol Vis Sci,2014,55(10):6324-6332.
[11]
Grzybowski A,Kanclerz P,Tsubota K,et al.A review on the epidemiology ofmyopia in school children worldwide[J].BMC Ophthalmol,2020,20(1):27.
[12]
Dolgin E.Themyopia boom[J].Nature,2015,519(7543):276-278.
[13]
Anderson WJ,Akduman L.Management ofmyopicmaculopathy:a review[J].Turk JOphthalmol,2023,53(5):307-312.
[14]
Sun MT,Tran M,Singh K,et al.Glaucoma and myopia:diagnostic challenges[J].Biomolecules,2023,13(3):562.
[15]
Huang Y,Chen X,Zhuang J,et al.The role of retinal dysfunction in myopia development[J].Cell Mol Neurobiol,2023,43(5):1905-1930.
[16]
Brown DM,Mazade R,Clarkson-Townsend D,et al.Candidate pathways for retina to scleral signaling in refractive eye growth[J].Experimental Eye Research,2022,219:109071.
[17]
Zhou X,Pardue MT,Iuvone PM,et al.Dopamine signaling and myopia development:Whatare the key challenges[J].Prog Retin Eye Res,2017,61:60-71.
[18]
Yu M,Hu Y,Han M,etal.Global risk factor analysis ofmyopia onset in children:a systematic review and meta-analysis[J].PLoSOne,2023,18(9):e0291470.
[19]
Ying Y,Ying Y,Hui C,et al.Effects of flickering light on refraction and changes in eye axial length of C57BL/6 mice[J].Ophthalmic Res,2011,46(2):80-87.
[20]
Tian T,Tian T,Leilei Z,etal.Wavelength defocus and temporal sensitivity affect refractive development in guinea pigs[J].Invest Ophthalmol Vis Sci,2019,60(6):2173-2180.
[21]
Timothy JG,Timothy JG,John TS,et al.The wavelength composition and temporalmodulation of ambient lighting strongly affect refractive development in young tree shrews[J].Exp Eye Res,2017,155:75-84.
[22]
Brown DM,Mazade R,Clarkson-Townsend D,et al.Candidate pathways for retina to scleral signaling in refractive eye growth[J].Exp Eye Res,2022,219:109071.
[23]
Sheila GC,Sheila GC,David PC,etal.Inhibition of retinal ON/OFF systems differentially affects refractive compensation to defocus[J].Neuroreport,2003,14(9):1233-1237.
[24]
Seyed HH,Hosein HY,Scott AR,et al.Retinal off-pathway overstimulation leads to greater accommodation-induced choroidal thinning[J].Invest Ophthalmol Vis Sci,2021,62(13):5.
[25]
Wang M,Aleman A,Schaeffel FJ,et al.Probing the potency of atificial dynamic on or off stimuli to inhibit myopia development[J].Invest Ophthalmol Vis Sci,2019,60(7):2599-2611.
[26]
Si C,Zhina Z,Qingqing R,et al.Bright light suppresses formdeprivation myopia development with activation of dopamine D1 receptor signaling in the ON pathway in retina[J].Invest Ophthalmol Vis Sci,2017,58(4):2306.
[27]
Andrea R,Andrea R,Alessandro B,et al.Myopia:mechanisms and strategies to slow down its progression[J].J Ophthalmol,2022,PMID:35747583.
[28]
Sarfare S,Yang J,Nickla DL.The effects of brief high intensity light on ocular growth in chicks developingmyopia vary with time of day[J].Exp Eye Res,2020,195:108039.
[29]
朱秋蓉,刘陇黔.近视与光照的关系[J].四川大学学报(医学版),2021,52(6):901-906.
[30]
Brown DM,Mazade R,Clarkson TD,et al.Candidate pathways for retina to scleral signaling in refractive eye growth[J].Exp Eye Res,2022,219:109071.
[31]
王洁月.DAT对豚鼠形觉剥夺性近视眼视网膜色素上皮bFGF表达作用的研究[D].长沙:中南大学,2010.
[32]
甄毅,黄海阔,汪东生.重视照明光源对眼球屈光发育的调节作用及其在近视眼防控中的应用前景[J/OL].中华眼科医学杂志(电子版),2021,11(2):65-69.
[1] 郑燕, 翟长斌, 付彩云, 张丽, 王玥, 胡雅斌, 柳静. 准分子激光原位角膜磨镶术联合快速角膜交联术后角膜光密度变化的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(06): 327-334.
[2] 陆妍, 王浩, 王开琦, 叶强, 张文芳. 甘肃省武威市民勤县小学生视力不良及近视现状的流行病学研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 140-145.
[3] 顾一帆, 潘璐. 关注近视眼防控措施及其面临的形势[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 129-133.
[4] 李新星, 方晏红, 陈会振, 张蓝月, 刘涵. 维生素D与眼病关系的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(06): 366-370.
[5] 尹磊, 李仕明, 柳鹏领, 孙金艳, 任芳芳, 谢红丽, 丁艳, 宋艳伟, 魏士飞. 郑州市小学生近视眼进展的纵向研究[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(05): 273-278.
[6] 王霜, 接英. 近视眼与干眼相关性的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(05): 311-315.
[7] 娜荷雅, 朱丹. 红光疗法在儿童近视眼防控中的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(04): 252-256.
[8] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[9] 任美琪, 李俊红, 冯张青. 间歇性外斜视新型热点问题的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(03): 162-166.
[10] 赵艳, 朱丹. 低浓度阿托品在儿童近视眼防控中应用的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(02): 124-128.
[11] 宗晨曦, 肖林, 宋红欣. 人工智能视力筛查在近视眼防控中的应用研究与展望[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(01): 60-64.
[12] 付玥川, 陶晨. 角膜塑形镜对儿童青少年低度近视眼进展控制长期效果及其影响因素的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(05): 287-292.
[13] 张宁宁, 慕璟玉, 马晓玲, 李小龙, 王雁, 赵勇. 儿童青少年高度近视眼眼底特征的研究现状[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(04): 252-256.
[14] 张瑞恒, 董力, 魏文斌. 雷帕霉素靶蛋白复合体1通路在近视眼进展中的研究现状[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(04): 247-251.
[15] 许馨月, 陈涛, 苏玉婷, 张作明. 青少年近视眼预防与控制技术研究的新进展[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(03): 173-177.
阅读次数
全文


摘要