切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (03) : 173 -177. doi: 10.3877/cma.j.issn.2095-2007.2022.03.009

综述

青少年近视眼预防与控制技术研究的新进展
许馨月1, 陈涛1, 苏玉婷1, 张作明1,()   
  1. 1. 710032 西安,空军军医大学航空航天医学系航空航天临床医学中心
  • 收稿日期:2021-08-26 出版日期:2022-06-28
  • 通信作者: 张作明
  • 基金资助:
    国家自然科学基金青年项目(32100953); 空军医学重大专项飞行人员作战效能提升项目(2020ZTB01)

Explore new strategies for prevention and control of myopia from new discoveries in aerospace medicine

Xinyue Xu1, Tao Chen1, Yuting Su1, Zuoming Zhang1,()   

  1. 1. Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi′an 710032, China
  • Received:2021-08-26 Published:2022-06-28
  • Corresponding author: Zuoming Zhang
引用本文:

许馨月, 陈涛, 苏玉婷, 张作明. 青少年近视眼预防与控制技术研究的新进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 173-177.

Xinyue Xu, Tao Chen, Yuting Su, Zuoming Zhang. Explore new strategies for prevention and control of myopia from new discoveries in aerospace medicine[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(03): 173-177.

传统预防与控制近视眼的方法主要包括光学矫正、角膜塑形镜、离焦眼镜及其他手段。但此类方法尚不理想。目前,有研究结果表明,户外活动和低浓度阿托品对预防近视眼的发生和控制具有积极作用;轴性近视眼的发展与巩膜向近视眼方向重塑性有关,但机制尚不明确;眼轴增长而致的真性近视眼具有不可恢复或逆转的特点。长期航天飞行后会表现为后极部眼球扁平化、眼轴变短及屈光状态呈现远视性位移,表明受力环境变化可以影响巩膜重塑。因此,笔者认为结合适当的锻炼方式可促使血液头向转移和增加头眼部组织静水压力梯度,影响局部巩膜重塑,从而使眼轴向变短的方向发展或延缓眼轴增长的趋势,可作为近视眼预防与控制的新思路。

The traditional methods for the control of myopia development are optical correction, orthokeratology lens, defocus glasses and other methods, however, these approaches are poor. At present, it has been demonstrated that outdoor activities and the application of low concentration atropine had a positive effect on preventing the occurrence of myopia and controlling the growth of myopia diopter. The occurrence and development of axial myopia was related to scleral remodeling toward myopic direction, but the mechanism remains unclear. In addition, true myopia caused by the axial growth was irreversible. After long-term spaceflight, astronauts had posterior eyeball flattening, axial shortening, and hyperopic displacement of refractive state, indicating that stress environment could cause sclera remodeling. Therefore, the combination of appropriate exercise to promote the transfer of blood head and increase the hydrostatic pressure gradient of the head and eye tissue might affect the local scleral remodeling and shorten the axial direction of the eye, or delay the trend of axial growth, which could provide a new idea for the prevention and control of myopia.

图1 不同体位时眼球壁主要承受重力作用部位的示意图 图A~图D分别示坐位、倒立位、平卧位及倒俯卧位时眼球壁主要承受重力部位的示意图
表1 不同药物控制近视眼的文献汇总
第一作者 药物 实验对象 实验结果 实验结论
Zhu等[27] 1%阿托品 平均年龄9岁儿童 随访24个月、25~36个月及36~48个月,使用1%阿托品药物患者的平均近视眼进展分别为(-0.27±0.81)D/年、(-0.31±0.29)D/年及(-0.41±0.23)D/年,轴向长度平均增加分别为(0.11±0.13)mm/年、(0.14±0.09)mm/年及(0.19±0.13)mm/年 1%阿托品可有效地调节眼部肌肉痉挛,延缓近视眼发展
Dong等[32] 0.025~2.5 ng/μl多巴胺 3周龄豚鼠 结膜下注射多巴胺第11 d,豚鼠失焦眼和离焦眼的屈光度分别为-4.06 D和-3.64 D;且对剥夺型近视的抑制作用呈剂量依赖性 结膜下注射多巴胺可抑制形觉剥夺诱导性近视眼的形成
Seltner等[33] 血管活性肠肽 雏鸡 血管活性肠肽注射8 d,雏鸡屈光度为-6.00 D近视眼,与未注射药物组眼轴长度的平均差异为0.6 mm,且对控制近视眼的进展呈剂量依赖性减少 球内注射血管活性肠肽可以有效地减少形觉剥夺诱导性近视眼形成,但不能完全消除
尹靓瑶等[34] 褪黑素 1周龄豚鼠 腹腔注射外源性褪黑素10 mg/kg形觉剥夺近视眼的屈光度、眼轴长度、视网膜诱导性一氧化氮合酶及褪黑素受体表达分别为(-4.30±0.59)D、(8.044±0.24)mm、0.3733±0.0427及0.3743±0.0447 外源性褪黑素可抑制甚至逆转形觉剥夺豚鼠的屈光改变
Yu等[35] 视黄酸 2周龄豚鼠 短波光暴露的豚鼠近视眼屈光度为(2.06±1.69)D,外源性视黄酸补充白光后,短波光组屈光度可恢复至(2.06±1.69)D 近视眼的视黄酸含量升高,且外源性补充视黄酸后可促进轴性近视眼的发生
Singh等[36,37] 7-甲基黄嘌呤 Wistar大鼠和小鼠 7-甲基黄嘌呤对大鼠口服90 d和180 d,250 mg/kg、500mg/kg及1000 mg/kg的7-甲基黄嘌均无死亡率和毒性迹象,未观察到器官大小变化、囊肿形成、液体潴留及晶体形成的变化 7-甲基黄嘌呤皆有效地延缓近视眼发展,且安全性良好
[1]
Guo Y, Liu LJ, Tang P, et al. Outdoor activity and myopia progression in 4-year follow-up of Chinese primary school children: The Beijing children eye study[J]. PLoS One, 2017, 12(4): e0175921.
[2]
Upadhyay A, Beuerman RW. Biological mechanisms of atropine control of myopia[J]. Eye Contact Lens, 2020, 46(3): 129.
[3]
Mader TH, Gibson CR, Pass AF, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight[J]. Ophthalmology, 2011, 118(10): 2058-2069.
[4]
Zhang LF, Hargens AR. Spaceflight-induced intracranial hyper-tension and visual impairment: pathophysiology and counter-measures[J]. Physiol Rev, 2018, 98(1): 59-87.
[5]
相璐,姜思宇,沈玺.近视的发病机制及防控研究进展[J]. 眼科新进展202141(5):488-494.
[6]
吕佳,王林洪. 调节滞后与青少年近视进展相关性的研究[J]. 临床眼科杂志201523(4):363-364.
[7]
李娜,王剑锋. 青少年近视矫治方法研究进展[J]. 临床眼科杂志201624(1):91-94.
[8]
Kaphle D, Atchison DA, Schmid KL. Multifocal spectacles in childhood myopia: Are treatment effects maintained? A systematic review and meta-analysis[J]. Surv Ophthalmol, 2020, 65(2): 239-249.
[9]
伍岚. 凸透三棱镜结合视觉生理性眼操训练对青少年近视的预防控制效果研究[J]. 中国现代药物应用201812(16):28-30.
[10]
韦丽娇,谢祥勇,何碧华,等. 光学矫正青少年近视眼防控方法的研究进展[J]. 中华眼科医学杂志202010(5):311-315.
[11]
刘长辉,魏栋栋,梁玲. 配戴减少周边远视离焦眼镜对近视儿童眼部参数的影响[J]. 国际眼科杂志201919(5):878-880.
[12]
甄毅,魏士飞,高杰,等. 降低球镜验光片间隔在提升红绿平衡试验实现率及视觉质量上的效果[J]. 眼科202130(3):184-188.
[13]
Logan NS, Wolffsohn JS. Role of un-correction, under-correction and over-correction of myopia as a strategy for slowing myopic progression[J]. Clin Exp Optom, 2020, 103(2): 133-137.
[14]
Smith IIIEL. Optical treatment strategies to slow myopia progression: effects of the visual extent of the optical treatment zone[J]. Exp Eye Res, 2013, 114: 77-88.
[15]
师丹娜,丁瞳,邱伟强. 治疗性角膜接触镜的发展及临床应用[J]. 国际眼科杂志201818(2):271-274.
[16]
Huang JH, Wen DZ, Wang QM, et al. Efficacy comparison of 16 interventions formyopia control in children[ J]. Ophthalmology, 2016, 123(4): 697-708.
[17]
Lingham G, Mackey DA, Lucas R, et al. How does spending time outdoors protect against myopia? A review[J]. Brit J Ophthalmol, 2020, 104(5): 593-599.
[18]
Muralidharan AR, Low SWY, Lee YC, et al. Recovery from form-deprivation myopia in chicks is dependent upon the fullness and correlated color temperature of the light spectrum[J]. Invest Ophth Vis Sci, 2022, 63(2): 16.
[19]
Muralidharan AR, Lança C, Biswas S, et al. Light and myopia: from epidemiological studies to neurobiological mechanisms[J]. Ther Adv Ophthalmol, 2021, 13: 1-45.
[20]
Dolgin E. The myopia boom[J]. Nature, 2015, 519(7543): 276-278.
[21]
Young FA, Baldwin WR, Box RA, et al. The transmission of refractive error within eskimo families[J]. Am J Optom, 1969, 46: 676-85.
[22]
Hu Y, Zhao F, Ding X, et al. Rates of myopia development in young Chinese schoolchildren during the outbreak of COVID-19[J]. JAMA Ophthalmol, 2021, 139(10): 1115-1121.
[23]
Huang PC, Hsiao YC, Tsai CY, et al. Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study[J]. Brit J Ophthalmol, 2020, 104(7): 956-961.
[24]
Xiong S, Sankaridurg P, Naduvilath T, et al. Time spent in outdoor activities in relation to myopiaprevention and control: a meta-analysis and systematic review[J]. Actaophthalmologica, 2017, 95(6): 551-566.
[25]
Bedrossian RH. The effect of atropine on myopia[J]. Ophthalmology, 1979, 86(5): 713-717.
[26]
Shih YF, Chen CH, Chou AIC, et al. Effects of different concentrations of atropine on controlling myopia in myopic children[J]. J Ocul Pharmacol Th, 1999, 15(1): 85-90.
[27]
Zhu Q, Tang Y, Guo L, et al. Efficacy and safety of 1% atropine on retardation of moderate myopia progression in Chinese school children[J]. Int J Med Sci, 2020, 17(2): 176.
[28]
Chua WH, Balakrishnan V, Chan YH, et al. Atropine for the treatment of childhood myopia[J]. Ophthalmology, 2006, 113(12): 2285-2291.
[29]
Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops[J]. Ophthalmology, 2016, 123(2): 391-399.
[30]
Sacchi M, Serafino M, Villani E, et al. Efficacy of atropine 0.01% for the treatment of childhood myopia in European patients[J]. Acta ophthalmologica, 2019, 97(8): e1136-e1140.
[31]
Chia A, Chua WH, Wen L, et al. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5%[J]. Am J Ophthalmol, 2014, 157(2): 451-457.
[32]
Dong F, Zhi Z, Pan M, et al. Inhibition of experimental myopia by a dopamine agonist: different effectiveness between form deprivation and hyperopic defocus in guinea pigs[J]. Mol Vis, 2011, 17: 2824-2834.
[33]
Seltner RLP, Stell WK. The effect of vasoactive intestinal peptide on development of form deprivation myopia in the chick: a pharmacological and immunocytochemical study[J]. Vision Res, 1995, 35(9): 1265-1270.
[34]
尹靓瑶. 外源性褪黑素对豚鼠形觉剥夺性近视中褪黑素受体、iNOS、c-fos表达的影响[D]. 郑州:郑州大学,2011.
[35]
Yu M, Liu W, Wang B, et al. Shortwavelength (blue) light is protective for lens-induced myopia in guinea pigs potentially through a retinoic acid-related mechanism[J]. Invest Ophth Vis Sci, 2021, 62(1): 21.
[36]
Singh H, Sahajpal NS, Singh H, et al. Pre-clinical and cellular toxicity evaluation of 7-methylxanthine: an investigational drug for the treatment of myopia[J]. Drug Chem Toxicol, 2021, 44(6): 575-584.
[37]
Singh H, Singh H, Sahajpal NS, et al. Sub-chronic and chronic toxicity evaluation of 7-methylxanthine: a new molecule for the treatment of myopia[J]. Drug Chem Toxicol, 2020: 1-12.
[38]
张延凯,刘艳丽,杨兰娜. 低浓度阿托品联合角膜塑形镜对青少年中低度近视控制治疗效果分析[J]. 中国处方药202119(11):121-124.
[39]
黄涛. 角膜塑形镜联合低浓度阿托品治疗青少年近视的临床疗效[J]. 临床合理用药杂志202114(27):133-135.
[40]
Sánchez-González JM, de-Hita-Cantalejo C, Baustita-Llamas MJ, et al. The combined effect of low-dose atropine with orthokeratology in pediatric myopia control: review of the current treatment status for myopia[J]. J Clin Med, 2020, 9(8): 2371.
[41]
Kinoshita N, Konno Y, Hamada N, et al. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results[J]. Jpn J Ophthalmol, 2018, 62(5): 544-553.
[42]
Liu H, Schaeffel F, Trier K, et al. Effects of 7-methylxanthine on deprivation myopia and retinal dopamine release in chickens[J]. Ophthalmic Res, 2020, 63(3): 347-357.
[43]
Sánchez-González JM, de-Hita-Cantalejo C, Baustita-Llamas MJ, et al. The combined effect of low-dose atropine with ortho-keratology in pediatric myopia control: review of the current treatment status for myopia[J]. J Clin Med, 2020, 9(8): 2371.
[44]
Hirasawa H, Contini M, Raviola E. Extrasynaptic release of GABA and dopamine by retinal dopaminergic neurons[J]. Philos TR Soc B, 2015, 370(1672): 20140186.
[45]
Zhang S, Yang J, Reinach PS, et al. Dopamine receptor subtypes mediate opposing effects on form deprivation myopia in pigmented guinea pigs[J]. Invest Ophth Vis Sci, 2018, 59(11): 4441-4448.
[46]
Chakraborty R, Ostrin LA, Nickla DL, et al. Circadian rhythms, refractive development, and myopia[J]. Ophthal Physl Opt, 2018, 38(3): 217-245.
[47]
Nickla DL, Jordan K, Yang J, et al. Effects of time-of-day on inhibition of lens-induced myopia by quinpirole, pirenzepine and atropine in chicks[J]. Exp Eye Res, 2019, 181: 5-14.
[48]
Ward AH, Siegwart JT, Frost MR, et al. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews[J]. Visual Neurosci, 2017, 34: E003.
[49]
孟博,李仕明,詹思延,等. 近视眼巩膜重塑相关基因多态性研究进展[J]. 中华眼科杂志201652(11):876-880.
[50]
宫玉波,许永杰,赵宏伟,等. 14 d尾吊模拟失重大鼠眼底血流动力学及眼轴变化研究[J]. 航天医学与医学工程201932(5):401-405.
[51]
宫玉波,赵宏伟,宋飞龙,等. 微重力环境下大鼠眼底血流动力学及视网膜、脉络膜厚度的变化[J]. 解放军医学杂志202146(1):7-10.
[52]
Shinojima A, Iwasaki K, Aoki K, et al. Subfoveal choroidal thickness and foveal retinal thickness during head-down tilt[J]. Aviat Space Environ Med, 2012, 83(4): 388-393.
[53]
Taibbi G, Cromwell RL, Zanello SB, et al. Ocular outcomes comparison between 14- and 70-day head-down-tilt bed rest[J]. Invest Ophthalmol Vis Sci, 2016, 57(2): 495-501.
[54]
Chatziravdeli V, Katsaras GN, Lambrou GI. Gene expression in osteoblasts and osteoclasts under microgravity conditions: a systematic review[J]. Curr Genomics, 2019, 20(3): 184-198.
[55]
许欣,徐志明,刘国印,等. 头低位卧床对眼内压、近视力、视野的影响及其中药防护[J]. 航天医学与医学工程200215(6):419-422.
[56]
Pärssinen O, Kauppinen M. Associations of reading posture, gaze angle and reading distance with myopia andmyopic progression[J]. Acta Ophthalmol, 2016, 94(8): 775-779.
[1] 宋红欣, 孙璐, 王庆强. 近视性屈光参差少年儿童眼部屈光生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 88-93.
[2] 王子杨, 杨文利. 关注屈光性白内障手术时代的精准眼球生物测量[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 193-197.
[3] 李梦媛, 汤云霞, 张静琳, 侯金佟, 陈倩茵, 马红婕, 吴德正. 成年超高度近视眼患者黄斑区巩膜厚度及其相关影响因素[J]. 中华眼科医学杂志(电子版), 2019, 09(02): 77-82.
[4] 霍敏灼, 梁先军, 何锦贤, 林英杰, 曾胜, 李学民. 不同年龄近视人群角膜水平直径及眼轴长度的比较[J]. 中华眼科医学杂志(电子版), 2018, 08(01): 23-29.
[5] 高楠楠, 云丽霞, 辛柳青, 胡丽兴. 鄂尔多斯市蒙古族与汉族青少年眼轴长度的对比研究[J]. 中华眼科医学杂志(电子版), 2017, 07(01): 32-37.
阅读次数
全文


摘要