切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (05) : 287 -292. doi: 10.3877/cma.j.issn.2095-2007.2022.05.006

论著

角膜塑形镜对儿童青少年低度近视眼进展控制长期效果及其影响因素的临床研究
付玥川1, 陶晨1,()   
  1. 1. 200120 上海交通大学医学院附属仁济医院眼科
  • 收稿日期:2022-02-27 出版日期:2022-10-28
  • 通信作者: 陶晨
  • 基金资助:
    上海市科学技术委员会科研计划项目(17411950205)

The long-term clinical effects and factors of orthokeratology lenses in low myopia children

Yuechuan Fu1, Chen Tao1,()   

  1. 1. Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200120, China
  • Received:2022-02-27 Published:2022-10-28
  • Corresponding author: Chen Tao
引用本文:

付玥川, 陶晨. 角膜塑形镜对儿童青少年低度近视眼进展控制长期效果及其影响因素的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 287-292.

Yuechuan Fu, Chen Tao. The long-term clinical effects and factors of orthokeratology lenses in low myopia children[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(05): 287-292.

目的

探讨角膜塑形(OK)镜对儿童青少年低度近视眼进展控制的长期效果及其影响因素。

方法

选择2016年1月至2021年12月于上海交通大学医学院附属仁济医院眼科就诊的儿童青少年169例(294只眼)低度近视眼患者作为研究对象。其中,男性75例(134只眼),女性94例(160只眼);年龄8~14岁,平均年龄(9.5±1.6)岁。按照配戴OK镜时间分为2年、3年及4~5年组。对比患者配戴OK镜前后球镜屈光度、眼轴长度(AL)及角膜曲率的变化。近视眼控制进展以球镜屈光度改变(△SD)和眼轴长度改变(△AL)来衡量。患者的年龄、球镜屈光度、柱镜屈光度、AL及平均角膜曲率以(±s)表示,采用配对t检验进行比较。将不同性别、年龄、基线球镜屈光度及AL患者的△SD及△AL分别进行单因素方差分析,对差异具有统计意义的变量采用多元线性回归分析判断其相关性。

结果

配戴OK镜前,2年、3年及4~5年组患者的角膜曲率分别为(43.39±1.36)D、(43.21±1.32)D及(43.32±1.40)D;配戴后分别为(42.91±2.09)D、(42.85±1.30)D及(42.98±1.37)D,配戴前后的差异均有统计学意义(t=3.319,5.348,6.613;P<0.05);上述3组患者的△SD分别为(-0.71±0.56)D、(-0.74±0.59)D及(-1.15±0.88)D。经单因素方差分析,配戴2年组不同年龄、角膜曲率及AL患者△SD的差异均具有统计学意义(F=6.578,3.279,7.815;P<0.05);不同年龄、基线球镜屈光度、角膜散光及AL患者△AL的差异均具有统计学意义(F=17.389,6.994,3.566,5.708;P<0.05)。配戴3年组不同年龄、基线球镜屈光度及AL患者△SD的差异均具有统计学意义(F=6.639,13.785,5.443;P<0.05);不同年龄和基线AL患者△AL的差异均具有统计学意义(F=17.280,3.170;P<0.05)。配戴4~5年组不同年龄和基线球镜屈光度患者△SD的差异均有统计学意义(F=19.328,4.175;P<0.05);不同年龄和基线球镜屈光度患者△AL的差异均具有统计学意义(F=50.146,4.813;P<0.05)。将单因素分析中具有统计学意义的变量进行多元线性回归分析,结果显示患者年龄与各随访时间点△SD的相关性均具有统计学意义(β=0.183,0.231,0.508;P<0.05)。基线球镜屈光度及AL与配戴3年后的△SD的相关性均具有统计学意义(β=0.400,0.181;P<0.05)。患者年龄与各随访时间点△AL的相关性均具有统计学意义(β=-0.326,-0.488,-0.697;P<0.05);基线球镜屈光度及基线AL与配戴2年及3年后△AL的相关性均具有统计学意义(β=-0.172,-0.184;P<0.05)。

结论

随访低度近视眼患者配戴OK镜5年,患者的角膜中央曲率趋于平坦,且维持稳定。OK镜控制低度近视眼进展效果显著,且患者的年龄、球镜屈光度及AL是影响其近视眼进展控制效果的主要因素。

Objective

To investigate the long-term clinical control effects of orthokeratology (Ortho-K) lenses in low myopia children and its factors.

Methods

One hunderd and sixty nine low myopia patients (294 eyes) with an average age of (9.5±1.6) years old (ranged from 8 to 14 years old) who were checked in at Department of Ophthalmology, Renji Hospital affiliated to Shanghai Jiaotong University School of Medicine from January 2016 to December 2021. All patients were divided into 2 years, 3 years and 4 to 5 years groups according to the period of their wearing Ortho-K lenses. The spherical diopters (SD), corneal curvature and axial length (AL) of patients were prospectively analyzed and compared before and after wearing. The changes of spherical diopters (△SD) and AL (△AL) were used to evaluate the controlling myopia progression. The age, SD, cylinder diopters, AL and corneal curvature were expressed by (±s), and compared by paired t test. The different gender, age, the based SD, AL and other indices of patients were compared △SD and △AL after wearing Ortho-K lenses using univariate, respectively. The multiplelinear regression analysis was performed if variables with statistical significance for differences and its relevance determined.

Results

The average corneal curvature of patients before and after wearing in 3 groups was (43.39±1.36)D, (43.21±1.32)D, (43.32±1.40)D, (42.91±2.09)D, (42.85±1.30)D, (42.98±1.37)D, with a significant difference between groups (F=3.319, 5.348, 6.613; P<0.05). The △SD of patients in 3 groups was (-0.71±0.56)D, (-0.74±0.59)D, (-1.15±0.88)D.One-way ANOVA showed that there was a significant difference between the age, the average corneal curvature, AL, respectively and the △SD after wearing Ortho-K lenses for 2 years (F=6.578, 3.279, 7.815; P<0.05), and between the age, the based SD, corneal astigmatism, AL, respectively and △AL (F=17.389, 6.994, 3.566, 5.708; P<0.05). After wearing Ortho-K lenses for 3 years, there was a significant difference between the age, the based SD, AL, respectively and △SD (F=6.639, 13.785, 5.443; P<0.05), and between the age, the based AL, respectively and △AL (F=17.280, 3.170; P<0.05). After wearing Ortho-K lenses for 4 to 5 years, there was a significant difference between the age, the based SD, respectively and △SD (F=19.328, 4.175; P<0.05), and between the age, the based SD and △AL (F=50.146, 4.813; P<0.05). The variables with a significant difference after one-way ANOVA were performed by multiplelinear regression analysis. The age was correlated with △SD in 3 groups with a significant difference (β=0.183, 0.231, 0.508; P<0.05); the age correlated with △SD in 3 groups with a significant difference (β=-0.326, -0.488, -0.697; P<0.05). The based SD, increase of AL was correlated with △SD after wearing Ortho-K lenses for 3 years with a significant difference (β=0.400, 0.181; P<0.05); the based SD and the based AL correlated with △AL after wearing Ortho-K lenses for 2 or 3 years with a significant difference, respectively (β=-0.172, -0.184; P<0.05).

Conclusions

During observation periods for 5 years, corneal curvature tended to flatter and remained stable. Ortho-K lenses has a capacity of effectively controlling progression of low myopia, especially axial myopia. Age, spherical diopters and AL were factors that affect its progression.

表1 各组配戴角膜塑形镜前后平均角膜曲率的比较
表2 年龄、球镜屈光度、柱镜屈光度及中央角膜厚度对配戴角膜塑形镜△AL和△SD影响的单因素分析
年龄区段(岁) 配戴2年 配戴3年 配戴4~5年
眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm)
8~9 77 -0.88±0.58 0.62±0.23 38 -0.89±0.61 0.76±0.25 34 -1.70±0.79 1.34±0.36
10~11 89 -0.59±0.51 0.45±0.22 50 -0.77±0.58 0.55±0.32 42 -1.04±0.83 0.78±0.37
12~14 15 -0.58±0.49 0.32±0.20 14 -0.25±0.29 0.24±0.18 18 -0.38±0.37 0.34±0.28
F   6.578 17.389   6.639 17.280   19.328 50.146
P   <0.05 <0.05   <0.05 <0.05   <0.05 <0.05
球镜屈光度区段(D) 配戴2年 配戴3年 配戴4~5年
眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm)
-0.25~-1.00 27 -0.86±0.53 0.67±0.27 21 -1.18±0.51 0.68±0.33 21 -1.44±0.96 1.12±0.54
-1.25~-2.00 91 -0.69±0.52 0.50±0.22 47 -0.78±0.56 0.62±0.33 44 -1.25±0.85 0.93±0.52
-2.25~-3.00 63 -0.68±0.61 0.47±0.24 34 -0.41±0.50 0.48±0.29 29 -0.78±0.77 0.68±0.41
F   1.117 6.994   13.785 3.041   4.175 4.813
P   >0.05 <0.05   <0.05 >0.05   <0.05 <0.05
柱镜屈光度区段(D) 配戴2年 配戴3年 配戴4~5年
眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm)
0.00~-0.50 118 -0.71±0.56 0.53±0.26 66 -0.75±0.55 0.61±0.28 63 -1.20±0.82 0.95±0.50
-0.75~-1.50 63 -0.73±0.55 0.48±0.21 36 -0.72±0.68 0.54±0.39 31 -1.05±1.01 0.77±0.50
t   0.213 1.334   -0.291 0.969   -0.773 1.639
P   >0.05 >0.05   >0.05 >0.05   >0.05 >0.05
中央角膜厚度区段(μm) 配戴2年 配戴3年 配戴4~5年
眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm)
≤500 40 -0.77±0.63 0.49±0.23 20 -0.85±0.45 0.70±0.29 18 -1.44±1.11 1.02±0.56
>500且≤530 47 -0.73±0.53 0.56±0.25 36 -0.69±0.64 0.58±0.33 39 -1.03±0.89 0.84±0.56
>530且≤560 50 -0.67±0.51 0.50±0.25 25 -0.77±0.52 0.54±0.29 24 -1.18±0.75 0.92±0.45
>560 44 -0.70±0.58 0.50±0.27 21 -0.68±0.73 0.55±0.37 13 -1.06±0.65 0.81±0.40
F   0.271 0.586   0.387 0.955   0.981 0.658
P   >0.05 >0.05   >0.05 >0.05   >0.05 >0.05
表3 角膜曲率、角膜散光度及眼轴长度对配戴角膜塑形镜△AL和△SD影响的单因素分析
角膜曲率区段(D) 配戴2年 配戴3年 配戴4~5年
眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm)
≤42.00 32 -0.53±0.43 0.46±0.27 19 -0.91±0.64 0.63±0.37 15 -1.48±0.81 1.09±0.64
>42.00且≤44.00 79 -0.69±0.62 0.50±0.28 58 -0.63±0.52 0.56±0.29 46 -1.01±0.83 0.80±0.45
>44.00 70 -0.83±0.51 0.56±0.19 25 -0.87±0.70 0.60±0.37 33 -1.19±0.96 0.93±0.52
F   3.279 1.513   2.424 0.306   1.700 1.813
P   <0.05 >0.05   >0.05 >0.05   >0.05 >0.05
角膜散光度区段(D) 配戴2年 配戴3年 配戴4~5年
眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm)
≤1.00 95 -0.74±0.56 0.56±0.26 41 -0.74±0.63 0.62±0.32 38 -1.18±0.80 0.98±0.56
>1.00且≤2.00 69 -0.71±0.55 0.47±0.23 58 -0.72±0.58 0.54±0.31 49 -1.18±0.90 0.85±0.46
>2.00 17 -0.60±0.59 0.43±0.19 3 -1.17±0.52 0.92±0.37 7 -0.75±1.18 0.61±0.51
F   0.442 3.566   0.819 2.572   0.770 1.670
P   >0.05 <0.05   >0.05 >0.05   >0.05 >0.05
眼轴长度区段(mm) 配戴2年 配戴3年 配戴4~5年
眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm) 眼数(只) △SD(±s,D) △AL(±s,mm)
≤24 45 -0.96±0.44 0.59±0.19 23 -1.07±0.66 0.70±0.36 24 -1.00±0.95 0.81±0.51
>24且≤25 94 -0.69±0.58 0.52±0.25 50 -0.70±0.50 0.60±0.29 46 -1.17±0.94 0.93±0.52
>25 42 -0.51±0.52 0.41±0.27 29 -0.55±0.61 0.48±0.33 24 -1.26±0.70 0.88±0.50
F   7.815 5.708   5.443 3.170   0.539 0.443
P   <0.05 <0.05   <0.05 <0.05   >0.05 >0.05
表4 影响配戴OK镜眼轴增长和球镜屈光度改变的多因素线性回归分析
[1]
Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042.
[2]
国家卫生健康委员会,教育部,财政部. 2018年全国儿童青少年近视调查[EB/OL]. [2019-04-29].

URL    
[3]
Guan M, Zhao W, Geng Y, et al. Changes in axial length after orthokeratology lens treatment for myopia: a meta-analysis[J]. Int Ophthalmol, 2020, 40(1): 255-265.
[4]
Fu AC, Chen XL, Lv Y, et al. Higher spherical equivalent refractive errors is associated with slower axial elongation wearing orthokeratology[J]. Cont Lens Anterior Eye, 2016, 39(1): 62-66.
[5]
Vander VDK, Kraker RT, Pineles SL, et al. Use of ortho-keratology for the prevention of myopic progression in children[J]. Ophthalmology, 2019, 126(4): 623-636.
[6]
Pärssinen O, Kauppinen M. Risk factors for high myopia: a 22-year follow-up study from childhood to adulthood[J]. Acta Ophthalmol. 2019, 97(5): 510-518.
[7]
Jiang D, Lin H, Li C, et al. Longitudinal association between myopia and parental myopia and outdoor time among students in Wenzhou: a 2.5-year longitudinal cohort study[J]. BMC Ophthalmol, 2021, 21(1): 11.
[8]
Liu XN, Naduvilath TJ, Wang J, et al. Sleeping late is a risk factor for myopia development amongst school-aged children in China[J]. Sci Rep, 2020, 10(1): 17194.
[9]
Wen L, Cao Y, Cheng Q, et al. Objectively measured near work, outdoor exposure and myopia in children[J]. Br J Ophthalmol, 2020, 104(11): 1542-1547.
[10]
余琼武,张萍,周善璧,等. 不同阅读距离的调节准确度与早发性近视眼的相关性[J]. 中华眼科杂志201652(7):520-524.
[11]
Lam CSY, Tang WC, Tse DY, et al. Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial[J]. Br J Ophthalmol, 2020, 104(3): 363-368.
[12]
Berntsen DA, Sinnott LT, Mutti DO, et al. A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation[J]. Invest Opthalmol Vis Sci, 2012, 53(2): 640-649.
[13]
Wan L, Wei CC, Chen CS, et al. The synergistic effects of orthokeratology and atropine in slowing the progression of myopia[J]. J Clin Med, 2018, 7(9): 259.
[14]
Kim WK, Kim BJ, Ryu IH, et al. Corneal epithelial and stromal thickness changes in myopic orthokeratology and their relationship with refractive change[J]. PloS One. 2018, 13(9): e0203652.
[15]
Liu Y, Wildsoet C. The effective add inherent in 2-zone negative lenses inhibits eye growth in myopic young chicks[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 5085-5093.
[16]
Tay SA, Farzavandi S, Tan D. Interventions to reduce myopia progression in children[J]. Strabismus, 2017, 25(1): 23-32.
[17]
Smith EL. Optical treatment strategies to slow myopia progression: Effects of the visual extent of the optical treatment zone[J]. Exp Eye Res, 2013, 114(1): 77-88.
[18]
Wolffsohn JS, Kollbaum PS, Berntsen DA, et al. IMI——clinical myopia control trials and instrumentation report[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M132-M160.
[19]
Wang B, Naidu RK, Qu X, et al. Factors related to axial length elongation and myopia progression in orthokeratology practice[J]. PloS One, 2017, 12(4): e0175913.
[20]
Yu LH, Jin WQ, Mao XJ, et al. Effect of orthokeratology on axial length elongation in moderate myopic and fellow high myopic eyes of children[J]. Clin Exp Optom, 2021, 104(1): 22-27.
[21]
王宁利,李仕明,魏士飞. 我国儿童青少年近视眼防控工作中的重点和难点[J]. 中华眼科杂志202157(4):241-244.
[22]
Wang B, Naidu RK, Qu X. Factors related to axial length elongation and myopia progression in orthokeratology practice[J]. PLoS One, 2017, 12(4): e0175913.
[1] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[2] 娜荷雅, 朱丹. 红光疗法在儿童近视眼防控中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 252-256.
[3] 任美琪, 李俊红, 冯张青. 间歇性外斜视新型热点问题的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 162-166.
[4] 赵艳, 朱丹. 低浓度阿托品在儿童近视眼防控中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 124-128.
[5] 宋红欣, 孙璐, 王庆强. 近视性屈光参差少年儿童眼部屈光生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 88-93.
[6] 宗晨曦, 肖林, 宋红欣. 人工智能视力筛查在近视眼防控中的应用研究与展望[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 60-64.
[7] 程英, 安文在, 林丹婷, 王宁利. 肠道菌群与眼部常见疾病关系的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 305-309.
[8] 张宁宁, 慕璟玉, 马晓玲, 李小龙, 王雁, 赵勇. 儿童青少年高度近视眼眼底特征的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 252-256.
[9] 张瑞恒, 董力, 魏文斌. 雷帕霉素靶蛋白复合体1通路在近视眼进展中的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 247-251.
[10] 王子杨, 杨文利. 关注屈光性白内障手术时代的精准眼球生物测量[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 193-197.
[11] 许馨月, 陈涛, 苏玉婷, 张作明. 青少年近视眼预防与控制技术研究的新进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 173-177.
[12] 曹晓光, 何燕玲, 鲍永珍, 王凯, 赵明威. 飞秒激光小切口角膜基质透镜取出术矫正散光的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 57-62.
[13] 吴彬阁, 何婧, 常颖, 赵世强, 接英. 内蒙古自治区包头市各民族青少年眼部生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 31-36.
[14] 姚沁楠, 万修华. 有晶状体眼后房型人工晶状体植入术与角膜屈光手术治疗高度近视眼有效性、安全性及可预测性的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 346-352.
[15] 慕璟玉, 王雁, 张芮, 杨依宁, 高云仙. 自主神经控制与近视眼发病机制的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(02): 119-123.
阅读次数
全文


摘要