切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (04) : 252 -256. doi: 10.3877/cma.j.issn.2095-2007.2023.04.012

综述

红光疗法在儿童近视眼防控中的研究进展
娜荷雅, 朱丹()   
  1. 010020 呼和浩特,内蒙古医科大学第一临床医学院 2020级硕士研究生
    010020 呼和浩特,内蒙古医科大学附属医院眼科
  • 收稿日期:2023-02-14 出版日期:2023-08-28
  • 通信作者: 朱丹
  • 基金资助:
    国家自然科学基金项目(81860178)

Effect of red-light therapy in myopia control in children

Heya Na, Dan Zhu()   

  1. Master′s degree 2020, the First Clinical Medical School, Inner Mongolia Medical University, Hohhot 010020, China
    Department of Ophthalmology, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010020, China
  • Received:2023-02-14 Published:2023-08-28
  • Corresponding author: Dan Zhu
引用本文:

娜荷雅, 朱丹. 红光疗法在儿童近视眼防控中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 252-256.

Heya Na, Dan Zhu. Effect of red-light therapy in myopia control in children[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(04): 252-256.

近视眼是患病率高且威胁视力的眼部疾病。虽然近视眼导致的视力下降可以通过角膜接触镜、框架眼镜或屈光手术来改善,但高度近视眼眼底改变可增加发生并发症的风险。业内普遍认为应关注对儿童近视眼发生与发展的防控,寻找安全有效的控制方法尤为重要。近年来,随着业内对光暴露与近视眼发展的认知,发现红光疗法可延缓眼轴增长引起的近视眼发展。本文中笔者回顾近年来国内外相关研究,对红光与近视眼的相关性和红光疗法在儿童近视眼防控中的机制、有效性及安全性进行综述。

Myopia is an eye disease with high incidence rate and threatening vision. Although the decrease in vision caused by myopia can be improved through corneal contact lenses, frame glasses, or refractive surgery, changes in the fundus of highly myopic eyes can increase the risk of complications. It is widely believed in the industry that attention should be paid to the prevention and control of the occurrence and development of myopia in children, and it is particularly important to find safe and effective control methods. In recent years, with the recognition of light exposure and the development of myopia in the industry, it has been found that red light therapy can delay the development of myopia caused by axial growth. In this article, the author reviews recent domestic and international research on the correlation between red light and myopia, as well as the mechanism, effectiveness, and safety of red light therapy in the prevention and control of myopia in children.

表1 低强度红光治疗临床试验文献汇总
[1]
刘莉静,颜华. 红光闪烁治疗仪联合红色视力表远距离视功能训练对儿童近视眼性弱视的影响[J]. 国际眼科杂志201919(5):888-891.
[2]
Jones LA, Sinnott LT, Mutti DO, et al. Parental history of myopia, sports and outdoor activities, and future myopia[J]. Invest Ophthalmol Vis Sci, 2007, 48(8): 3524-3532.
[3]
Jones-Jordan LA, Sinnott LT, Cotter SA, et al. Time outdoors, visual activity, and myopia progression in juvenile-onset myopes[J]. Invest Ophthalmol Vis Sci, 2012, 53(11): 7169-7175.
[4]
Fulk GW, Cyert LA, Parker DA. Seasonal variation in myopia progression and ocular elongation[J]. Optom Vis Sci, 2002, 79(1): 46-51.
[5]
Read SA, Pieterse EC, Alonso-Caneiro D, et al. Daily morning light therapy is associated with an increase in choroidal thickness in healthy young adults[J]. Sci Rep, 2018, 8(1): 8200.
[6]
Smith EL, Hung LF, Arumugam B, et al. Effects of Long-Wavelength Lighting on Refractive Development in Infant Rhesus Monkeys[J]. Invest Ophthalmol Vis Sci, 2015, 56(11): 6490-6500.
[7]
Seidemann A, Schaeffel F. Effects of longitudinal chromatic aberration on accommodation and emmetropization[J]. Vision Res, 2002, 42(21): 2409-2417.
[8]
Rucker FJ, Wallman J. Chick eyes compensate for chromatic simulations of hyperopic and myopic defocus: evidence that the eye uses longitudinal chromatic aberration to guide eye-growth[J]. Vision Res, 2009, 49(14): 1775-1783.
[9]
Torii H, Kurihara T, Seko Y, et al. Violet Light Exposure Can Be a Preventive Strategy Against Myopia Progression[J]. EBioMedicine, 2017, 15: 210-219.
[10]
Liu R, Qian YF, He JC, et al. Effects of different monochromatic lights on refractive development and eye growth in guinea pigs[J]. Exp Eye Res, 2011, 92(6): 447-453.
[11]
Gawne TJ, Siegwart JT, Ward AH, et al. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews[J]. Exp Eye Res, 2017, 155: 75-84.
[12]
Hung LF, Arumugam B, She Z, et al. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys[J]. Exp Eye Res, 2018, 176: 147-160.
[13]
Liu R, Hu M, He JC, et al. The effects of monochromatic illumination on early eye development in rhesus monkeys[J]. Invest Ophthalmol Vis Sci, 2014, 55(3): 1901-1909.
[14]
Dai L, Yang W, Qin X, et al. Serum metabolomics profiling and potential biomarkers of myopia using LC-QTOF/MS[J]. Exp Eye Res, 2019, 186: 107737.
[15]
Mao J, Liu S, Wen D, et al. Basic fibroblast growth factor suppresses retinal neuronal apoptosis in form-deprivation myopia in chicks[J]. Curr Eye Res, 2006, 31(11): 983-987.
[16]
Jówko E, Płaszewski M, Ciešliński M, et al. The effect of low level laser irradiation on oxidative stress, muscle damage and function following neuromuscular electrical stimulation. A double blind, randomised, crossover trial[J]. BMC Sports Sci Med Rehabil, 2019, 11: 38.
[17]
Ojaghi R, Sohanaki H, Ghasemi T, et al. Role of low-intensity laser therapy on naloxone-precipitated morphine withdrawal signs in mice: is nitric oxide a possible candidate mediator?[J]. Lasers Med Sci, 2014, 29(5): 1655-1659.
[18]
Rubis LM. Chiropractic management of Bell palsy with low level laser and manipulation: a case report[J]. J Chiropr Med, 2013, 12(4): 288-291.
[19]
Chiou GC, Xuan B, Liu Q, et al. Inhibition of interleukin-1-induced uveitis and corneal fibroblast proliferation by interleukin-1 blockers[J]. J Ocul Pharmacol Ther, 2000, 16(5): 407-418.
[20]
Yamaura M, Yao M, Yaroslavsky I, et al. Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes[J]. Lasers Surg Med, 2009, 41(4): 282-290.
[21]
Schaeffel F, Feldkaemper M. Animal models in myopia research[J]. Clin Exp Optom, 2015, 98(6): 507-517.
[22]
Smith EL, Hung LF, Arumugam B. Visual regulation of refractive development: insights from animal studies[J]. Eye (Lond), 2014, 28(2): 180-188.
[23]
Marcos S, Burns SA, Moreno-Barriusop E, et al. A new approach to the study of ocular chromatic aberrations[J]. Vision Res, 1999, 39(26): 4309-4323.
[24]
Rucker F. Monochromatic and white light and the regulation of eye growth[J]. Exp Eye Res, 2019, 184: 172-182.
[25]
Rucker FJ, Wallman J. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths[J]. Vision Res, 2008, 48(19): 1980-1991.
[26]
Gawne TJ, Norton TT. An opponent dual-detector spectral drive model of emmetropization[J]. Vision Res, 2020, 173: 7-20.
[27]
Gawne TJ, Ward AH, Norton TT. Juvenile Tree Shrews Do Not Maintain Emmetropia in Narrow-band Blue Light[J]. Optom Vis Sci, 2018, 95(10): 911-920.
[28]
Summers JA. The choroid as a sclera growth regulator[J]. Exp Eye Res, 2013, 114: 120-127.
[29]
Wallman J, Wildsoet C, Xu A, et al. Moving the retina: choroidal modulation of refractive state[J]. Vision Res, 1995, 35(1): 37-50.
[30]
Cohen Y, Peleg E, Belkin M, et al. Ambient illuminance, retinal dopamine release and refractive development in chicks[J]. Exp Eye Res, 2012, 103: 33-40.
[31]
Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia[J]. Exp Eye Res, 2013, 114: 106-119.
[32]
Nickla DL, Damyanova P, Lytle G. Inhibiting the neuronal isoform of nitric oxide synthase has similar effects on the compensatory choroidal and axial responses to myopic defocus in chicks as does the non-specific inhibitor L-NAME[J]. Exp Eye Res, 2009, 88(6): 1092-1099.
[33]
Zhang S, Zhang G, Zhou X, et al. Changes in Choroidal Thickness and Choroidal Blood Perfusion in Guinea Pig Myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074-3083.
[34]
Chhablani J, Barteselli G. Clinical applications of choroidal imaging technologies[J]. Indian J Ophthalmol, 2015, 63(5): 384-390.
[35]
Hirata A, Negi A. Morphological changes of choriocapillaris in experimentally induced chick myopia[J]. Graefes Arch Clin Exp Ophthalmol, 1998, 236(2): 132-137.
[36]
Junghans BM, Crewther SG, Liang H, et al. A role for choroidal lymphatics during recovery from form deprivation myopia?[J]. Optom Vis Sci, 1999, 76(11): 796-803.
[37]
Li Z, Long W, Hu Y, et al. Features of the Choroidal Structures in Myopic Children Based on Image Binarization of Optical Coherence Tomography[J]. Invest Ophthalmol Vis Sci, 2020, 61(4): 18.
[38]
吴伟福,玄园园,李素惠,等. 640 nm红光频闪治疗仪联合调节集合训练控制眼轴长度治疗近视眼的研究[J]. 潍坊医学院学报201537(3):240-241.
[39]
Zhou L, Xing C, Qiang W, et al. Low-intensity, long-wavelength red light slows the progression of myopia in children: an Eastern China-based cohort[J]. Ophthalmic Physiol Opt, 2022, 42(2): 335-344.
[40]
Jiang Y, Zhu Z, Tan X, et al. Effect of Repeated Low-Level Red-Light Therapy for Myopia Control in Children: A Multicenter Randomized Controlled Trial[J]. Ophthalmology, 2021, 129(5): 509-519.
[41]
Liu G, Li B, Rong H, et al. Axial Length Shortening and Choroid Thickening in Myopic Adults Treated with Repeated Low-Level Red Light[J]. J Clin Med, 2022, 11(24): 7498.
[42]
Xiong F, Mao T, Liao H, et al. Orthokeratology and Low-Intensity Laser Therapy for Slowing the Progression of Myopia in Children[J]. Biomed Res Int, 2021: 8915867.
[43]
Xiong R, Zhu Z, Jiang Y, et al. Longitudinal Changes and Predictive Value of Choroidal Thickness for Myopia Control after Repeated Low-Level Red-Light Therapy[J]. Ophthalmology, 2023, 130(3): 286-296.
[44]
Wang W, Jiang Y, Zhu Z, et al. Clinically Significant Axial Shortening in Myopic Children After Repeated Low-Level Red Light Therapy: A Retrospective Multicenter Analysis[J]. Ophthalmol Ther, 2023, 12(2): 999-1011.
[45]
Montés-Micó R, Pastor-Pascual F, Ruiz-Mesa R, et al. Ocular biometry with swept-source optical coherence tomography[J]. J Cataract Refract Surg, 2021, 47(6): 802-814.
[46]
Lau JK, Wan K, Cheung SW, et al. Weekly Changes in Axial Length and Choroidal Thickness in Children During and Following Orthokeratology Treatment With Different Compression Factors[J]. Transl Vis Sci Technol, 2019, 8(4): 9.
[47]
Cooper J, Tkatchenko AV. A Review of Current Concepts of the Etiology and Treatment of Myopia[J]. Eye Contact Lens, 2018, 44(4): 231-247.
[48]
Li FF, Zhang Y, Zhang X, et al. Age Effect on Treatment Responses to 0.05%, 0.025%, and 0.01% Atropine: Low-Concentration Atropine for Myopia Progression Study[J]. Ophthalmology, 2021, 128(8): 1180-1187.
[49]
Yam JC, Li FF, Zhang X, et al. Two-Year Clinical Trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study: Phase 2 Report[J]. Ophthalmology, 2020, 127(7): 910-919.
[50]
Li FF, Kam KW, Zhang Y, et al. Differential Effects on Ocular Biometrics by 0.05%, 0.025%, and 0.01% Atropine: Low-Concentration Atropine for Myopia Progression Study[J]. Ophthalmology, 2020, 127(12): 1603-1611.
[51]
Gawne TJ, Ward AH, Norton TT. Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews[J]. Vision Res, 2017, 140: 55-65.
[52]
Núñez-Álvarez C, Osborne NN. Enhancement of corneal epithelium cell survival, proliferation and migration by red light: Relevance to corneal wound healing[J]. Exp Eye Res, 2019, 180: 231-241.
[53]
Núñez-Álvarez C, Suárez-Barrio C, Del Olmo Aguado S, et al. Blue light negatively affects the survival of ARPE19 cells through an action on their mitochondria and blunted by red light[J]. Acta Ophthalmol, 2019, 97(1): e103-e115.
[54]
Tang J, Du Y, Lee CA, et al. Low-intensity far-red light inhibits early lesions that contribute to diabetic retinopathy: in vivo and in vitro[J]. Invest Ophthalmol Vis Sci, 2013, 54(5): 3681-3690.
[55]
Tian L, Cao K, Ma DL, et al. Investigation of the Efficacy and Safety of 650 nm Low-Level Red Light for Myopia Control in Children: A Randomized Controlled Trial[J]. Ophthalmol Ther, 2022, 11(6): 2259-2270.
[1] 周美岑, 王华, 母得志. 早产儿疫苗预防接种及时性[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 261-266.
[2] 熊风, 林辉煌, 陈晓波. 铥激光在泌尿外科中的临床应用及研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 533-536.
[3] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[4] 彭永辉, 张文杰, 李炳根, 聂向阳, 吴凯, 杨六成. 单孔双针疝囊高位结扎术在儿童巨大腹股沟疝的临床应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 566-569.
[5] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[6] 王峰杰, 王礼光, 廖珊, 刘颖, 符荣党, 陈焕伟. 腹腔镜右半肝切除术治疗肝癌的安全性与疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 517-522.
[7] 黄洁. 腹腔镜肝脏手术中一些值得深入思考的问题[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 267-271.
[8] 范清泉, 宋晓玲, 翁明哲, 顾钧. 消化道重建术后ERCP安全性和疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 331-335.
[9] 梁文龙, 曹杰, 黄庆, 林泳, 黄红丽, 杨平, 李冠炜, 胡鹤. 信迪利单抗联合瑞戈非尼治疗晚期结直肠癌的疗效与安全性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 409-413.
[10] 陈婷婷, 江学良, 余佳丽, 柯剑林. 干细胞治疗炎症性肠病的安全性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 193-198.
[11] 朴成林, 蓝炘, 司振铎, 冯健, 安峰铎, 李强, 谈明坤, 赵娜, 冷建军. 局部晚期右半结肠癌行结肠癌根治联合胰十二指肠切除术疗效分析:附5例报告[J]. 中华临床医师杂志(电子版), 2023, 17(06): 666-670.
[12] 曹文玺, 陈箫, 竺来法, 周永平. 尼妥珠单抗联合白蛋白结合型紫杉醇治疗胰腺癌的有效性及安全性分析[J]. 中华临床医师杂志(电子版), 2023, 17(04): 409-413.
[13] 梁君, 褚晨宇, 孙凤艳, 袁仪浪, 周曦, 王卫东. 胸壁完全植入式静脉输液港术中隧道针逆向穿刺的可行性和安全性[J]. 中华介入放射学电子杂志, 2023, 11(04): 310-313.
[14] 黄学卿, 魏楠, 蒋天鹏, 安天志, 王黎洲, 许敏, 周石. 超声引导经远端桡动脉入路行肝癌TACE术的临床研究[J]. 中华介入放射学电子杂志, 2023, 11(03): 251-256.
[15] 李承玉, 徐连萍, 王圣松, 王群. 不同抗癫痫发作药物单药治疗在卒中后癫痫中的保留率和有效性分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 325-330.
阅读次数
全文


摘要