[1] |
Xu L, Wang Y, Li Y, et al. Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study[J]. Ophthalmology, 2006, 113(7): e1131-e1134.
|
[2] |
Morgan IG, French AN, Ashby RS, et al. The epidemics of myopia: Aetiology and prevention[J]. Prog Retin Eye Res, 2018, 62: 134-149.
|
[3] |
徐玉珊,张丰菊. 眼部信号转导在近视发病机制中的作用[J]. 国际眼科纵览,2020, 44(5):318-323.
|
[4] |
Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease[J]. Cell, 2017, 168(6): 960-976.
|
[5] |
Qin J, Wang Z, Hoogeveen-Westerveld M, et al. Structural Basis of the Interaction between Tuberous Sclerosis Complex 1 (TSC1) and Tre2-Bub2-Cdc16 Domain Family Member 7 (TBC1D7)[J]. J Biol Chem, 2016, 291(16): 8591-8601.
|
[6] |
Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling[J]. Trends Cell Biol, 2015, 25(9): 545-555.
|
[7] |
Liu P, Gan W, Chin YR, et al. PtdIns(3,4,5)P3-Dependent Activation of the mTORC2 Kinase Complex[J]. Cancer Discov, 2015, 5(11): 1194-1209.
|
[8] |
Henske EP, Jóžwiak S, Kingswood JC, et al. Tuberous sclerosis complex[J]. Nat Rev Dis Primers, 2016, 2(1): 16035.
|
[9] |
Rowley SA, O'callaghan FJ, Osborne JP. Ophthalmic manifestations of tuberous sclerosis: a population based study[J]. Br J Ophthalmol, 2001, 85(4): 420-423.
|
[10] |
Gai Z, Chu W, Deng W, et al. Structure of the TBC1D7-TSC1 complex reveals that TBC1D7 stabilizes dimerization of the TSC1 C-terminal coiled coil region[J]. J Mol Cell Biol, 2016, 8(5): 411-425.
|
[11] |
Dibble CC, Elis W, Menon S, et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1[J]. Mol cell, 2012, 47(4): 535-546.
|
[12] |
Alfaiz AA, Micale L, Mandriani B, et al. TBC1D7 mutations are associated with intellectual disability, macrocrania, patellar dislocation, and celiac disease[J]. Hum Mutat, 2014, 35(4): 447-451.
|
[13] |
Capo-Chichi JM, Tcherkezian J, Hamdan FF, et al. Disruption of TBC1D7, a subunit of the TSC1-TSC2 protein complex, in intellectual disability and megalencephaly[J]. J Med Genet, 2013, 50(11): 740-744.
|
[14] |
Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies[J]. Nat Rev Genet, 2019, 20(8): 467-484.
|
[15] |
Li X, Long J, Liu Y, et al. Association of MTOR and PDGFRA gene polymorphisms with different degrees of myopia severity[J]. Exp Eye Res, 2022, 217: 108962.
|
[16] |
Yuan XL, Zhang R, Zheng Y, et al. Corneal curvature-associated variant differentiates mild myopia from high myopia in Han Chinese population[J]. Ophthalmic Genet, 2021, 42(4): 446-457.
|
[17] |
Kovacs E, Zorn JA, Huang Y, et al. A structural perspective on the regulation of the epidermal growth factor receptor[J]. Annu Rev Biochem, 2015, 84: 739-764.
|
[18] |
Chen H, Liu B, Neufeld AH. Epidermal growth factor receptor in adult retinal neurons of rat, mouse, and human[J]. J Comp Neurol, 2007, 500(2): 299-310.
|
[19] |
Jonas JB, Dong L, Da Chen S, et al. Intraocular epidermal growth factor concentration, axial length, and high axial myopia[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259(11): 3229-3234.
|
[20] |
Dong L, Shi XH, Li YF, et al. Blockade of epidermal growth factor and its receptor and axial elongation in experimental myopia[J]. The FASEB J, 2020, 34(10): 13654-13670.
|
[21] |
Fan Q, Verhoeven VJM, Wojciechowski R, et al. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error[J]. Nat Commun, 2016, 7: 11008.
|
[22] |
Berasain C, Avila MA. Amphiregulin[J]. Semin Cell Dev Biol, 2014, 28: 31-41.
|
[23] |
Dong L, Shi XH, Kang YK, et al. Amphiregulin and ocular axial length[J]. Acta Ophthalmol, 2019, 97(3): e460-e470.
|
[24] |
Jiang WJ, Song HX, Li SY, et al. Amphiregulin Antibody and Reduction of Axial Elongation in Experimental Myopia[J]. EBioMedicine, 2017, 17: 134-144.
|
[25] |
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways[J]. Cancers, 2017, 9(5): 52.
|
[26] |
Wei CC, Kung YJ, Chen CS, et al. Allergic Conjunctivitis-induced Retinal Inflammation Promotes Myopia Progression[J]. EBioMedicine, 2018, 28: 274-286.
|
[27] |
He M, Xiang F, Zeng Y, et al. Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China: A Randomized Clinical Trial[J]. JAMA, 2015, 314(11): 1142-1148.
|
[28] |
Mimura T, Yamagami S, Usui T, et al. Relationship between myopia and allergen-specific serum IgE levels in patients with allergic conjunctivitis[J]. Clin Exp Ophthalmol, 2009, 37(7): 670-677.
|
[29] |
Shafer BM, Qiu M, Rapuano CJ, et al. Association Between Hay Fever and High Myopia in United States Adolescents and Adults[J]. Eye Contact Lens, 2017, 43(3): 186-191.
|
[30] |
Xue M, Ke Y, Ren X, et al. Proteomic analysis of aqueous humor in patients with pathologic myopia[J]. J Proteomics, 2021, 234: 104088.
|
[31] |
Zeng L, Li X, Liu J, et al. RNA-Seq Analysis Reveals an Essential Role of the Tyrosine Metabolic Pathway and Inflammation in Myopia-Induced Retinal Degeneration in Guinea Pigs[J]. Int J Mol Sci, 2021, 22(22): 12598.
|
[32] |
Tien PT, Lin CH, Chen CS, et al. Diacerein Inhibits Myopia Progression through Lowering Inflammation in Retinal Pigment Epithelial Cell[J]. Mediators Inflamm, 2021: 6660640.
|
[33] |
Mérida S, Villar V M, Navea A, et al. Imbalance Between Oxidative Stress and Growth Factors in Human High Myopia[J]. Front Physiol, 2020, 11: 463.
|
[34] |
Yu FJ, Lam TC, Sze A YH, et al. Alteration of retinal metabolism and oxidative stress may implicate myopic eye growth: Evidence from discovery and targeted proteomics in an animal model[J]. J Proteomics, 2020, 221: 103684.
|
[35] |
Feng L, Ju M, Lee KYV, et al. A Proinflammatory Function of Toll-Like Receptor 2 in the Retinal Pigment Epithelium as a Novel Target for Reducing Choroidal Neovascularization in Age-Related Macular Degeneration[J]. Am J Pathol, 2017, 187(10): 2208-2221.
|
[36] |
Huang J, Gu S, Chen M, et al. Abnormal mTORC1 signaling leads to retinal pigment epithelium degeneration[J]. Theranostics, 2019, 9(4): 1170-1180.
|
[37] |
Summers JA, Martinez E. Visually induced changes in cytokine production in the chick choroid[J]. eLife, 2021, 10: e70608.
|
[38] |
Wei WB, Xu L, Jonas JB, et al. Subfoveal choroidal thickness: the Beijing Eye Study[J]. Ophthalmology, 2013, 120(1): 175-180.
|
[39] |
Jin P, Zou H, Zhu J, et al. Choroidal and Retinal Thickness in Children With Different Refractive Status Measured by Swept-Source Optical Coherence Tomography[J]. Am J Ophthalmol, 2016, 168: 164-176.
|
[40] |
Wakabayashi T, Ikuno Y. Choroidal filling delay in choroidal neovascularisation due to pathological myopia[J]. Br J Ophthalmol, 2010, 94(5): 611-615.
|
[41] |
Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R, et al. Quantitative OCT Angiography of the Retinal Microvasculature and the Choriocapillaris in Myopic Eyes[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2063-2069.
|
[42] |
Wu H, Zhang G, Shen M, et al. Assessment of Choroidal Vascularity and Choriocapillaris Blood Perfusion in Anisomyopic Adults by SS-OCT/OCTA[J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 8.
|
[43] |
Agrawal R, Gupta P, Tan KA, et al. Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study[J]. Sci Rep, 2016, 6: 21090.
|
[44] |
Zhang S, Zhang G, Zhou X, et al. Changes in Choroidal Thickness and Choroidal Blood Perfusion in Guinea Pig Myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074-3083.
|
[45] |
Zhou X, Zhang S, Zhang G, et al. Increased Choroidal Blood Perfusion Can Inhibit Form Deprivation Myopia in Guinea Pigs[J]. Invest Ophthalmol Vis Sci, 2020, 61(13): 25.
|
[46] |
Wei Q, Zhuang X, Fan J, et al. Proinflammatory and angiogenesis-related cytokines in vitreous samples of highly myopic patients[J]. Cytokine, 2021, 137: 155308.
|
[47] |
Zhao F, Zhang D, Zhou Q, et al. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis[J]. EBioMedicine, 2020, 57: 102878.
|
[48] |
Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci U S A, 2018, 115(30): e7091-e7100.
|
[49] |
Dodd KM, Yang J, Shen MH, et al. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3[J]. Oncogene, 2015, 34(17): 2239-2250.
|
[50] |
Ruiz-Medrano J, Montero JA, Flores-Moreno I, et al. Myopic maculopathy: Current status and proposal for a new classification and grading system (ATN)[J]. Prog Retin Eye Res, 2019, 69: 80-115.
|
[51] |
Harimoto A, Obata R, Yamamoto M, et al. Retinal pigment epithelium melanin distribution estimated by polarisation entropy and its association with retinal sensitivity in patients with high myopia[J]. Br J Ophthalmol, 2022,106(10): 1457-1462.
|
[52] |
Du R, Fang Y, Jonas JB, et al. Clinical features of patchy chorioretinal atrophy In pathologic myopia[J]. Retina (Philadelphia, Pa), 2020, 40(5): 951-959.
|
[53] |
Go YM, Zhang J, Fernandes J, et al. MTOR-initiated metabolic switch and degeneration in the retinal pigment epithelium[J].FASEB J, 2020, 34(9): 12502-12520.
|
[54] |
He L, Gomes AP, Wang X, et al. mTORC1 Promotes Metabolic Reprogramming by the Suppression of GSK3-Dependent Foxk1 Phosphorylation[J]. Mol cell, 2018, 70(5): 949-960.
|
[55] |
Liu NN, Zhao N, Cai N. Suppression of the proliferation of hypoxia-Induced retinal pigment epithelial cell by rapamycin through the /mTOR/HIF-1α/VEGF/ signaling[J]. IUBMB life, 2015, 67(6): 446-452.
|
[56] |
Wang C, Ma J, Xu M, et al. mTORC1 signaling pathway regulates macrophages in choroidal neovascularization[J]. Mol Immunol, 2020, 121: 72-80.
|