切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (04) : 247 -251. doi: 10.3877/cma.j.issn.2095-2007.2022.04.011

综述

雷帕霉素靶蛋白复合体1通路在近视眼进展中的研究现状
张瑞恒1, 董力2, 魏文斌3,()   
  1. 1. 100730 首都医科大学附属北京同仁医院2020级硕士研究生
    2. 100730 首都医科大学附属北京同仁医院2020级博士研究生
    3. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 眼内肿瘤诊治研究北京市重点实验室 北京市眼科学与视觉科学重点实验室 医学人工智能研究与验证工信部重点实验室
  • 收稿日期:2021-07-02 出版日期:2022-08-28
  • 通信作者: 魏文斌
  • 基金资助:
    北京市科委科技计划项目(Z201100005520045)

Research status of mTORC1 pathway involved in the progression of myopia

Ruiheng Zhang1, Li Dong2, Wenbin Wei3,()   

  1. 1. Master′degree 2020, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
    2. Opthalmic Doctor degree 2020, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
    3. Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Science Key Lab, Key Laboratory of Research and Verification of Medical Artificial Intelligence (Ministry of Industry and Information Technology), Capital Medical University, Beijing 100730, China
  • Received:2021-07-02 Published:2022-08-28
  • Corresponding author: Wenbin Wei
引用本文:

张瑞恒, 董力, 魏文斌. 雷帕霉素靶蛋白复合体1通路在近视眼进展中的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 247-251.

Ruiheng Zhang, Li Dong, Wenbin Wei. Research status of mTORC1 pathway involved in the progression of myopia[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(04): 247-251.

近年来,近视眼的发病率显著提高,尤其是近视眼屈光度的进展及其并发症的产生与发展引起业内与社会的广泛关切。探讨近视眼进展的病理生理机制成为焦点,也在其防控中成为关键的切入点。现有研究成果显示,近视眼的进展涉及多种通路和多个途径。雷帕霉素靶蛋白复合体1(mTORC1)在调节真核细胞生长及代谢中具有重要作用。有关研究发现mTORC1参与调控近视眼的进展。本文中笔者将mTORC1通路在近视眼进展中的研究现状进行综述。

In recent years, the incidence rate of myopia has increased significantly, especially the development of myopia diopter and the occurrence and development of its complications have aroused widespread concern in the industry and society. To explore the pathophysiological mechanism of myopia has become the focus, and also is the key breakthrough point in its prevention and control. The existing literature show that the progress of myopia involves multiple pathways. Rapamycin target protein complex 1 (mTORC1) plays an important role in regulating the growth and metabolism of eukaryotic cells. Relevant studies have found that mTORC1 is involved in regulating the progress of myopia. In this article, the research status of mTORC1 pathway in the development of myopia were reviewed.

[1]
Xu L, Wang Y, Li Y, et al. Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study[J]. Ophthalmology, 2006, 113(7): e1131-e1134.
[2]
Morgan IG, French AN, Ashby RS, et al. The epidemics of myopia: Aetiology and prevention[J]. Prog Retin Eye Res, 2018, 62: 134-149.
[3]
徐玉珊,张丰菊. 眼部信号转导在近视发病机制中的作用[J]. 国际眼科纵览2020, 44(5):318-323.
[4]
Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease[J]. Cell, 2017, 168(6): 960-976.
[5]
Qin J, Wang Z, Hoogeveen-Westerveld M, et al. Structural Basis of the Interaction between Tuberous Sclerosis Complex 1 (TSC1) and Tre2-Bub2-Cdc16 Domain Family Member 7 (TBC1D7)[J]. J Biol Chem, 2016, 291(16): 8591-8601.
[6]
Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling[J]. Trends Cell Biol, 2015, 25(9): 545-555.
[7]
Liu P, Gan W, Chin YR, et al. PtdIns(3,4,5)P3-Dependent Activation of the mTORC2 Kinase Complex[J]. Cancer Discov, 2015, 5(11): 1194-1209.
[8]
Henske EP, Jóžwiak S, Kingswood JC, et al. Tuberous sclerosis complex[J]. Nat Rev Dis Primers, 2016, 2(1): 16035.
[9]
Rowley SA, O'callaghan FJ, Osborne JP. Ophthalmic manifestations of tuberous sclerosis: a population based study[J]. Br J Ophthalmol, 2001, 85(4): 420-423.
[10]
Gai Z, Chu W, Deng W, et al. Structure of the TBC1D7-TSC1 complex reveals that TBC1D7 stabilizes dimerization of the TSC1 C-terminal coiled coil region[J]. J Mol Cell Biol, 2016, 8(5): 411-425.
[11]
Dibble CC, Elis W, Menon S, et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1[J]. Mol cell, 2012, 47(4): 535-546.
[12]
Alfaiz AA, Micale L, Mandriani B, et al. TBC1D7 mutations are associated with intellectual disability, macrocrania, patellar dislocation, and celiac disease[J]. Hum Mutat, 2014, 35(4): 447-451.
[13]
Capo-Chichi JM, Tcherkezian J, Hamdan FF, et al. Disruption of TBC1D7, a subunit of the TSC1-TSC2 protein complex, in intellectual disability and megalencephaly[J]. J Med Genet, 2013, 50(11): 740-744.
[14]
Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies[J]. Nat Rev Genet, 2019, 20(8): 467-484.
[15]
Li X, Long J, Liu Y, et al. Association of MTOR and PDGFRA gene polymorphisms with different degrees of myopia severity[J]. Exp Eye Res, 2022, 217: 108962.
[16]
Yuan XL, Zhang R, Zheng Y, et al. Corneal curvature-associated variant differentiates mild myopia from high myopia in Han Chinese population[J]. Ophthalmic Genet, 2021, 42(4): 446-457.
[17]
Kovacs E, Zorn JA, Huang Y, et al. A structural perspective on the regulation of the epidermal growth factor receptor[J]. Annu Rev Biochem, 2015, 84: 739-764.
[18]
Chen H, Liu B, Neufeld AH. Epidermal growth factor receptor in adult retinal neurons of rat, mouse, and human[J]. J Comp Neurol, 2007, 500(2): 299-310.
[19]
Jonas JB, Dong L, Da Chen S, et al. Intraocular epidermal growth factor concentration, axial length, and high axial myopia[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259(11): 3229-3234.
[20]
Dong L, Shi XH, Li YF, et al. Blockade of epidermal growth factor and its receptor and axial elongation in experimental myopia[J]. The FASEB J, 2020, 34(10): 13654-13670.
[21]
Fan Q, Verhoeven VJM, Wojciechowski R, et al. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error[J]. Nat Commun, 2016, 7: 11008.
[22]
Berasain C, Avila MA. Amphiregulin[J]. Semin Cell Dev Biol, 2014, 28: 31-41.
[23]
Dong L, Shi XH, Kang YK, et al. Amphiregulin and ocular axial length[J]. Acta Ophthalmol, 2019, 97(3): e460-e470.
[24]
Jiang WJ, Song HX, Li SY, et al. Amphiregulin Antibody and Reduction of Axial Elongation in Experimental Myopia[J]. EBioMedicine, 2017, 17: 134-144.
[25]
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways[J]. Cancers, 2017, 9(5): 52.
[26]
Wei CC, Kung YJ, Chen CS, et al. Allergic Conjunctivitis-induced Retinal Inflammation Promotes Myopia Progression[J]. EBioMedicine, 2018, 28: 274-286.
[27]
He M, Xiang F, Zeng Y, et al. Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China: A Randomized Clinical Trial[J]. JAMA, 2015, 314(11): 1142-1148.
[28]
Mimura T, Yamagami S, Usui T, et al. Relationship between myopia and allergen-specific serum IgE levels in patients with allergic conjunctivitis[J]. Clin Exp Ophthalmol, 2009, 37(7): 670-677.
[29]
Shafer BM, Qiu M, Rapuano CJ, et al. Association Between Hay Fever and High Myopia in United States Adolescents and Adults[J]. Eye Contact Lens, 2017, 43(3): 186-191.
[30]
Xue M, Ke Y, Ren X, et al. Proteomic analysis of aqueous humor in patients with pathologic myopia[J]. J Proteomics, 2021, 234: 104088.
[31]
Zeng L, Li X, Liu J, et al. RNA-Seq Analysis Reveals an Essential Role of the Tyrosine Metabolic Pathway and Inflammation in Myopia-Induced Retinal Degeneration in Guinea Pigs[J]. Int J Mol Sci, 2021, 22(22): 12598.
[32]
Tien PT, Lin CH, Chen CS, et al. Diacerein Inhibits Myopia Progression through Lowering Inflammation in Retinal Pigment Epithelial Cell[J]. Mediators Inflamm, 2021: 6660640.
[33]
Mérida S, Villar V M, Navea A, et al. Imbalance Between Oxidative Stress and Growth Factors in Human High Myopia[J]. Front Physiol, 2020, 11: 463.
[34]
Yu FJ, Lam TC, Sze A YH, et al. Alteration of retinal metabolism and oxidative stress may implicate myopic eye growth: Evidence from discovery and targeted proteomics in an animal model[J]. J Proteomics, 2020, 221: 103684.
[35]
Feng L, Ju M, Lee KYV, et al. A Proinflammatory Function of Toll-Like Receptor 2 in the Retinal Pigment Epithelium as a Novel Target for Reducing Choroidal Neovascularization in Age-Related Macular Degeneration[J]. Am J Pathol, 2017, 187(10): 2208-2221.
[36]
Huang J, Gu S, Chen M, et al. Abnormal mTORC1 signaling leads to retinal pigment epithelium degeneration[J]. Theranostics, 2019, 9(4): 1170-1180.
[37]
Summers JA, Martinez E. Visually induced changes in cytokine production in the chick choroid[J]. eLife, 2021, 10: e70608.
[38]
Wei WB, Xu L, Jonas JB, et al. Subfoveal choroidal thickness: the Beijing Eye Study[J]. Ophthalmology, 2013, 120(1): 175-180.
[39]
Jin P, Zou H, Zhu J, et al. Choroidal and Retinal Thickness in Children With Different Refractive Status Measured by Swept-Source Optical Coherence Tomography[J]. Am J Ophthalmol, 2016, 168: 164-176.
[40]
Wakabayashi T, Ikuno Y. Choroidal filling delay in choroidal neovascularisation due to pathological myopia[J]. Br J Ophthalmol, 2010, 94(5): 611-615.
[41]
Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R, et al. Quantitative OCT Angiography of the Retinal Microvasculature and the Choriocapillaris in Myopic Eyes[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2063-2069.
[42]
Wu H, Zhang G, Shen M, et al. Assessment of Choroidal Vascularity and Choriocapillaris Blood Perfusion in Anisomyopic Adults by SS-OCT/OCTA[J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 8.
[43]
Agrawal R, Gupta P, Tan KA, et al. Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study[J]. Sci Rep, 2016, 6: 21090.
[44]
Zhang S, Zhang G, Zhou X, et al. Changes in Choroidal Thickness and Choroidal Blood Perfusion in Guinea Pig Myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074-3083.
[45]
Zhou X, Zhang S, Zhang G, et al. Increased Choroidal Blood Perfusion Can Inhibit Form Deprivation Myopia in Guinea Pigs[J]. Invest Ophthalmol Vis Sci, 2020, 61(13): 25.
[46]
Wei Q, Zhuang X, Fan J, et al. Proinflammatory and angiogenesis-related cytokines in vitreous samples of highly myopic patients[J]. Cytokine, 2021, 137: 155308.
[47]
Zhao F, Zhang D, Zhou Q, et al. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis[J]. EBioMedicine, 2020, 57: 102878.
[48]
Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci U S A, 2018, 115(30): e7091-e7100.
[49]
Dodd KM, Yang J, Shen MH, et al. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3[J]. Oncogene, 2015, 34(17): 2239-2250.
[50]
Ruiz-Medrano J, Montero JA, Flores-Moreno I, et al. Myopic maculopathy: Current status and proposal for a new classification and grading system (ATN)[J]. Prog Retin Eye Res, 2019, 69: 80-115.
[51]
Harimoto A, Obata R, Yamamoto M, et al. Retinal pigment epithelium melanin distribution estimated by polarisation entropy and its association with retinal sensitivity in patients with high myopia[J]. Br J Ophthalmol, 2022106(10): 1457-1462.
[52]
Du R, Fang Y, Jonas JB, et al. Clinical features of patchy chorioretinal atrophy In pathologic myopia[J]. Retina (Philadelphia, Pa), 2020, 40(5): 951-959.
[53]
Go YM, Zhang J, Fernandes J, et al. MTOR-initiated metabolic switch and degeneration in the retinal pigment epithelium[J].FASEB J, 2020, 34(9): 12502-12520.
[54]
He L, Gomes AP, Wang X, et al. mTORC1 Promotes Metabolic Reprogramming by the Suppression of GSK3-Dependent Foxk1 Phosphorylation[J]. Mol cell, 2018, 70(5): 949-960.
[55]
Liu NN, Zhao N, Cai N. Suppression of the proliferation of hypoxia-Induced retinal pigment epithelial cell by rapamycin through the /mTOR/HIF-1α/VEGF/ signaling[J]. IUBMB life, 2015, 67(6): 446-452.
[56]
Wang C, Ma J, Xu M, et al. mTORC1 signaling pathway regulates macrophages in choroidal neovascularization[J]. Mol Immunol, 2020, 121: 72-80.
[1] 齐晓伟, 叶松青. 抗体药物偶联物开创乳腺癌治疗新格局[J]. 中华乳腺病杂志(电子版), 2023, 17(03): 129-135.
[2] 余楷婷, 王东, 钟豪, 何美芳, 王菊芳. 纤维连接蛋白1在乳腺癌中的表达及其与人类表皮生长因子受体2的相关性研究[J]. 中华普通外科学文献(电子版), 2023, 17(03): 203-210.
[3] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[4] 李咏生, 孙建国, 李梦侠, 重庆肺癌精准治疗协作组(CPLOG). 第三代EGFR-TKI耐药后诊疗策略专家共识[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 145-155.
[5] 孙中华, 王晓晗, 接贵涛, 刘淑芳. EGFR突变非小细胞肺癌胸腔积液与外周血ctDNA丰度及EGFR-TKI疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 101-103.
[6] 陈俞坊, 王康, 吴文昊, 张厚丽, 周向东. EGFR敏感突变ⅠA期浸润性肺腺癌术后辅助靶向治疗预后分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 776-781.
[7] 甘开梅, 黄剑. 肺癌干细胞对EGFR-TKI耐药影响的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 36-44.
[8] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
[9] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[10] 娜荷雅, 朱丹. 红光疗法在儿童近视眼防控中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 252-256.
[11] 任美琪, 李俊红, 冯张青. 间歇性外斜视新型热点问题的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 162-166.
[12] 赵艳, 朱丹. 低浓度阿托品在儿童近视眼防控中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 124-128.
[13] 宗晨曦, 肖林, 宋红欣. 人工智能视力筛查在近视眼防控中的应用研究与展望[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 60-64.
[14] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[15] 崔军威, 刘荫华, 刘晓岭, 胡艺冰, 胡慧. 双靶联合化疗药物在HER2阳性乳腺癌新辅助治疗中的疗效及其影响因素[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1062-1067.
阅读次数
全文


摘要