切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2024, Vol. 14 ›› Issue (03) : 129 -133. doi: 10.3877/cma.j.issn.2095-2007.2024.03.001

述评

关注近视眼防控措施及其面临的形势
顾一帆1, 潘璐1,()   
  1. 1. 201100 上海,复旦大学附属闵行医院眼科
  • 收稿日期:2024-06-08 出版日期:2024-06-28
  • 通信作者: 潘璐
  • 基金资助:
    上海市眼病防治中心"沪眼星光"人才培养计划项目(HYXG-YY02)

Pay attention to the prevention and control measures of myopia and the situation it faces

Yifan Gu1, Lu Pan1,()   

  1. 1. Department of Ophthalmology, Minhang Hospital, Fudan University, Shanghai 201100, China
  • Received:2024-06-08 Published:2024-06-28
  • Corresponding author: Lu Pan
引用本文:

顾一帆, 潘璐. 关注近视眼防控措施及其面临的形势[J]. 中华眼科医学杂志(电子版), 2024, 14(03): 129-133.

Yifan Gu, Lu Pan. Pay attention to the prevention and control measures of myopia and the situation it faces[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(03): 129-133.

近年来,近视眼的高患病率已成为一个重大的公共卫生问题。目前,经政府主管部门和社会各界的努力,近视防控的举措日益丰富,重点是预防发生和延缓进展。现阶段常用的防控手段主要包括低浓度阿托品的应用、配戴角膜塑形镜、配戴离焦框架眼镜、使用低能量红光疗法、采用全光谱照明及增加户外活动时间等。本文中笔者就我国当前近视眼防控面临的形势、主要防控措施的优势及存在的问题进行评述。

In recent years, the high prevalence of myopia has become a major public health problem. At present, with the efforts of the competent government departments and all sectors of society, the measures for myopia prevention and control are increasingly rich, focusing on preventing the occurrence and delaying the progress. The commonly used prevention and control measures at this stage mainly include the application of low concentration atropine, wearing orthokeratology glasses, wearing defocus frame glasses, using low-energy red light therapy, using full spectrum lighting and increasing outdoor activity time. In this paper, the current situation of myopia prevention and control in China, the advantages and problems of the main prevention and control measures were reviewed.

表1 中国不同地区近视眼的患病情况
[1]
Flitcroft DI, He M, Jonas JB, et al. IMI-defining and classifying myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): 20-30.
[2]
Morgan IG, Ohno-Matsui K, Saw SM. Myopia[J]. Lancet, 2012, 379(9827): 1739-1748.
[3]
Naidoo KS, Fricke TR, Frick KD, et al. Potential lost productivity resulting from the global burden of myopia[J]. Ophthalmology, 2019, 126(3): 338-346.
[4]
Dong L, Kang YK, Li Y, et al. Prevalence and time trends of myopia in children and adolescents in China[J]. Retina, 2020, 40(3): 399-411.
[5]
Li SM, Wei S, Atchison DA, et al. Annual Incidences and Progressions of Myopia and High Myopia in Chinese Schoolchildren Based on a 5-Year Cohort Study[J]. Invest Ophthalmol Vis Sci, 2022, 63(1): 8.
[6]
Wang H, Li Y. Prevalence of myopia and uncorrected myopia among 721 032 schoolchildren in a city-wide vision screening in southern China[J]. Br J Ophthalmol. 2023, 107(12): 1798-1805.
[7]
Pan CW, Wu RK, Liu H, et al. Types of lamp for homework and myopia among chinese school-aged children[J], Ophthalmic Epidemiol, 2018, 25(3): 250-256.
[8]
Wu JF, Bi HS, Wang SM, et al. Refractive error, visual acuity and causes of vision loss in children in Shandong, China. The Shandong Children Eye Study[J]. PloS one, 2013, 8(12): e82763.
[9]
Guo L, Yang J, Mai J, et al. Prevalence and associated factors of myopia among primary and middle school-aged students[J]. Eye (Lond), 2016, 30(6): 796-804.
[10]
Peng L, Gao L, Zheng Y, et al. Refractive errors and visual impairment among children and adolescents in southernmost China[J]. BMC Ophthalmol, 2021, 21(1): 227.
[11]
Choy BNK, You Q, Zhu MM, et al. Prevalence and associations of myopia in Hong Kong primary school students[J]. Jpn J Ophthalmol. 2020, 64(4): 437-449.
[12]
Wang J, Li Y, Zhao Z, et al. School-based epidemiology study of myopia in Tianjin, China[J]. Int Ophthalmol. 2020, 40(9): 2213-2222.
[13]
Jiang D, Zhang D, Zhang Y, et al. The trend of myopia rate in 61 350 children and adolescents[J]. Acta Ophthalmol. 2020, 98(4): e525-e526.
[14]
Chang P, Zhang B, Lin L, et al. Comparison of myopic progression before, during, and after COVID-19 Lockdown[J]. Ophthalmology. 2021, 128(11): 1655-1657.
[15]
Yen MY, Liu JH, Kao SC, et al. Comparison of the effect of atropine and cyclopentolate on myopia[J]. Ann Ophthalmol1989, 21(5): 180-182, 187.
[16]
Li FF, Yam JC. Low-concentration atropine eye drops for myopia progression[J]. Asia Pac J Ophthalmol (Phila)2019, 8(5): 360-365.
[17]
Jawaid I, Saunders K. Low concentration atropine and myopia[J]. Eye (Lond), 2024, 38(3): 434-441.
[18]
Yam JC, Jiang Y, Tang SM, et al. Low-concentration atropine for myopia progression (LAMP) Study[J]. Ophthalmology, 2019, 126(1): 113-124.
[19]
Yam JC, Li FF, Zhang X, et al. Two-year clinical trial of the low-concentration atropine for myopia progression (LAMP) Study[J]. Ophthalmology, 2020, 127(7): 910-919.
[20]
Yam JC, Zhang XJ, Zhang Y, et al. Three-Year clinical trial of low-concentration atropine for myopia progression (LAMP) Study[J]. Ophthalmology, 2022, 129(3): 308-321.
[21]
Wang XY, Deng HW, Yang J, et al. The optimal atropine concentration for myopia control in Chinese children[J]. Int J Ophthalmol. 2024, 17(6): 1128-1137.
[22]
中华医学会眼科学分会眼视光学组,中国医师协会眼科医师分会眼视光专业委员会. 低浓度阿托品滴眼液在儿童青少年近视防控中的应用专家共识(2022)[J]. 中华眼视光学与视觉科学杂志202224(6):401-409.
[23]
Bullimore MA, Johnson LA. Overnight orthokeratology[J]. Cont Lens Anterior Eye, 2020, 43(4): 322-332.
[24]
Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, et al. Long-term efficacy of orthokeratology contact lens wear in controlling the progression of childhood myopia[J]. Curr Eye Res, 2017, 42(5): 713-720.
[25]
Cheung SW, Boost MV, Cho P. Pre-treatment observation of axial elongation for evidence-based selection of children in Hong Kong for myopia control[J]. Cont Lens Anterior Eye, 2019, 42(4): 392-398.
[26]
Xuguang S, Lin C, Yan Z, et al. Acanthamoeba keratitis as a complication of orthokeratology[J]. Am J Ophthalmol, 2003, 136(6): 1159-1161.
[27]
Arumugam B, Hung LF, To CH, et al. The effects of simultaneous dual focus lenses on refractive development in infant monkeys[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7423-7432.
[28]
Lam CSY, Tang WC, Tse DY, et al. Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression[J]. Br J Ophthalmol, 2020, 104(3): 363-368.
[29]
Liu J, Lu Y, Huang D, et al. The Efficacy of defocus incorporated multiple segments lenses in slowing myopia progression[J]. Ophthalmology, 2023, 130(5): 542-550.
[30]
Yang W, Lin F, Li M, et al. Immediate effect in the retina and choroid after 650 nm low-level red light therapy in children[J]. Ophthalmic Res, 2023, 66(1): 312-318.
[31]
Xiong R, Zhu Z, Jiang Y, et al. Longitudinal changes and predictive value of choroidal thickness for myopia control after repeated low-level red-light therapy[J]. Ophthalmology, 2023, 130(3): 286-296.
[32]
Dong J, Zhu Z, Xu H, et al. Myopia control effect of repeated low-level red-light therapy in Chinese children[J]. Ophthalmology, 2023, 130(2): 198-204.
[33]
Liu H, Yang Y, Guo J, et al. Retinal damage after repeated low-level red-light laser exposure[J]. JAMA Ophthalmol, 2023, 141(7): 693-695.
[34]
Lam CS, Tang WC, Tse DY, et al. Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese school children[J]. Br J Ophthalmol, 2014, 98(1): 40-45.
[35]
Li N, Lin W, Liang R, et al. Comparison of two different orthokeratology lenses and defocus incorporated soft contact (DISC) lens in controlling myopia progression[J]. Eye Vis (Lond). 2023, 10(1): 43.
[36]
Hua WJ, Jin JX, Wu XY, et al. Elevated light levels in schools have a protective effect on myopia[J]. Ophthalmic Physiol Opt. 2015, 35(3): 252-262.
[37]
Torii H, Kurihara T, Seko Y, et al. Violet light exposure can be a preventive strategy against myopia progression[J]. EBioMedicine. 2017, 15: 210-219.
[38]
甄毅,黄海阔,汪东生. 重视照明光源对眼球屈光发育的调节作用及其在近视眼防控中的应用前景[J/OL]. 中华眼科医学杂志(电子版)202111(2):65-69.
[39]
Kinoshita N, Konno Y, Hamada N, et al. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia[J]. Jpn J Ophthalmol. 2018, 62(5): 544-553.
[40]
Tang T, Lu Y, Li X. et al. Comparison of the long-term effects of atropine in combination with Orthokeratology and defocus incorporated multiple segment lenses for myopia control in Chinese children and adolescents[J]. Eye (Lond). 2024, 38(9): 1660-1667.
[41]
P?rssinen O, Lyyra AL. Myopia and myopic progression among schoolchildren[J]. Invest Ophthalmol Vis Sci, 1993, 34(9): 2794-2802.
[42]
Mutti DO, Mitchell GL, Moeschberger ML, et al. Parental myopia, near work, school achievement, and children′s refractive error[J]. Invest Ophthalmol Vis Sci, 2002, 43(12): 3633-3640.
[43]
Jones LA, Sinnott LT, Mutti DO, et al. Parental history of myopia, sports and outdoor activities, and future myopia[J]. Invest Ophthalmol Vis Sci, 2007, 48(8): 3524-3532.
[44]
Dirani M, Tong L, Gazzard G, et al. Outdoor activity and myopia in Singapore teenage children[J]. Br J Ophthalmol, 2009, 93(8): 997-1000.
[45]
French AN, Ashby RS, Morgan IG, et al. Time outdoors and the prevention of myopia[J]. Exp Eye Res, 2013, 114: 58-68.
[46]
Read SA, Collins MJ, Vincent SJ. Light exposure and eye growth in childhood[J]. Invest Ophthalmol Vis Sci, 2015, 56(11): 6779-6787.
[47]
McKnight CM, Sherwin JC, Yazar S, et al. Myopia in young adults is inversely related to an objective marker of ocular sun exposure[J]. Am J Ophthalmol, 2014, 158(5): 1079-1085.
[48]
Gwiazda J, Deng L, Manny R, et al. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial[J]. Invest Ophthalmol Vis Sci, 2014, 55(2): 752-758.
[49]
Wen L, Cao Y, Cheng Q, et al. Objectively measured near work, outdoor exposure and myopia in children[J]. Br J Ophthalmol, 2020, 104(11): 1542-1547.
[50]
Ulaganathan S, Read SA, Collins MJ, et al. Daily axial length and choroidal thickness variations in young adults[J]. Exp Eye Res, 2019, 189: 107850.
[51]
He M, Xiang F, Zeng Y, et al. Effect of time spent outdoors at school on the development of myopia among children in China[J]. JAMA, 2015, 314(11): 1142-1148.
[52]
Wu PC, Chen CT, Lin KK, et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial[J]. Ophthalmology, 2018, 125(8): 1239-1250.
[53]
He X, Sankaridurg P, Wang J, et al. Time outdoors in reducing myopia[J]. Ophthalmology, 2022, 129(11): 1245-1254.
[54]
Li SM, Ran AR, Kang MT, et al. Effect of text messaging parents of school-aged children on outdoor time to control myopia[J]. JAMA pediatrics, 2022, 176(11): 1077-1083.
[55]
Ashby RS, Schaeffel F. The effect of bright light on lens compensation in chicks[J]. Invest Ophthalmol Vis Sci, 2010, 51(10): 5247-5253.
[56]
Muralidharan AR, Low SWY, Lee YC, et al. Recovery from form-deprivation myopia in chicks is dependent upon the fullness and correlated color temperature of the light spectrum[J]. Invest Ophthalmol Vis Sci, 2022, 63(2): 16.
[57]
Wang M, Schaeffel F, Jiang B, et al. Effects of light of different spectral composition on refractive development and retinal dopamine in chicks[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4413-4424.
[58]
Megaw PL, Boelen MG, Morgan IG, et al. Diurnal patterns of dopamine release in chicken retina[J]. Neurochem Int, 2006, 48(1): 17-23.
[59]
Chen S, Zhi Z, Ruan Q, et al. Bright light suppresses form-deprivation myopia development with activation of dopamine D1 receptor signaling in the on pathway in retina[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2306-2316.
[60]
Gawne TJ, Siegwart JT, Ward AH, et al. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews[J]. Exp Eye Res, 2017, 155: 75-84.
[61]
Norton TT, Siegwart JT. Light levels, refractive development, and myopia[J]. Exp Eye Res, 2013, 114: 48-57.
[62]
McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia[J]. Prog Retin Eye Res, 2003, 22(3): 307-338.
[1] 李振华, 解宝江, 易为, 李丽, 卫雅娴, 周明书, 伊诺. 82例孕产妇对新型冠状病毒肺炎疫情防控认知的心理干预及常态化疫情防控应对要点[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 173-179.
[2] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[3] 马俊永, 王毅州, 李锡锋, 吴雅丽, 张小峰. 浅谈腹腔镜肝切除术出血防控策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 495-498.
[4] 范清泉, 宋晓玲, 翁明哲, 顾钧. 消化道重建术后ERCP安全性和疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 331-335.
[5] 李新星, 方晏红, 陈会振, 张蓝月, 刘涵. 维生素D与眼病关系的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 366-370.
[6] 王霜, 接英. 近视眼与干眼相关性的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 311-315.
[7] 尹磊, 李仕明, 柳鹏领, 孙金艳, 任芳芳, 谢红丽, 丁艳, 宋艳伟, 魏士飞. 郑州市小学生近视眼进展的纵向研究[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 273-278.
[8] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[9] 娜荷雅, 朱丹. 红光疗法在儿童近视眼防控中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 252-256.
[10] 任美琪, 李俊红, 冯张青. 间歇性外斜视新型热点问题的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 162-166.
[11] 赵艳, 朱丹. 低浓度阿托品在儿童近视眼防控中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 124-128.
[12] 张凯文, 刘含若. 眼健康与全身健康相互作用机制的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 119-123.
[13] 曹文玺, 陈箫, 竺来法, 周永平. 尼妥珠单抗联合白蛋白结合型紫杉醇治疗胰腺癌的有效性及安全性分析[J]. 中华临床医师杂志(电子版), 2023, 17(04): 409-413.
[14] 王勇, 王丽. 导管接触性溶栓治疗下肢深静脉血栓安全性和有效性的系统评价再评价[J]. 中华介入放射学电子杂志, 2024, 12(01): 58-63.
[15] 李承玉, 徐连萍, 王圣松, 王群. 不同抗癫痫发作药物单药治疗在卒中后癫痫中的保留率和有效性分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 325-330.
阅读次数
全文


摘要