切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (02) : 88 -93. doi: 10.3877/cma.j.issn.2095-2007.2023.02.005

论著

近视性屈光参差少年儿童眼部屈光生物学参数的临床研究
宋红欣(), 孙璐, 王庆强   
  1. 100730 首都医科大学附属北京同仁医院眼科中心 北京市眼科研究所眼科学与视觉科学北京市重点实验室
    100021 北京,爱尔英智眼科医院
    257034 山东东营胜利油田中心医院眼科
  • 收稿日期:2022-11-14 出版日期:2023-04-28
  • 通信作者: 宋红欣
  • 基金资助:
    首都卫生发展科研专项项目(2022-1G-4083)

Clinical study on the biological parameters of eye refraction in children with myopic anisometropia

Hongxin Song(), Lu Sun, Qingqiang Wang   

  1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing 100730, China
    Aier Intech Eye Hospital, Beijing 100021, China
    Department of Opthamology, Shengli Oilfield Central Hospital of Shandong Dongying, Dongying 257034, China
  • Received:2022-11-14 Published:2023-04-28
  • Corresponding author: Hongxin Song
引用本文:

宋红欣, 孙璐, 王庆强. 近视性屈光参差少年儿童眼部屈光生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 88-93.

Hongxin Song, Lu Sun, Qingqiang Wang. Clinical study on the biological parameters of eye refraction in children with myopic anisometropia[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(02): 88-93.

目的

探讨单眼近视性屈光参差对少年儿童眼部屈光参数的影响,分析眼轴变化与屈光度变化相关性。

方法

收集2017年7月至2020年5月于首都医科大学附属北京同仁医院眼科中心就诊的单眼近视性屈光参差少年儿童患者70例(140只眼)。其中,男性28例(56只眼),女性42例(84只眼),年龄8~15岁,平均(11.0±1.9)岁。全部患者均测量眼轴长度、角膜曲率平坦K值、角膜曲率陡峭K值、角膜平坦E值及角膜陡峭E值;散瞳验光并计算等效球镜屈光度。患者的年龄、眼轴长度、等效球镜屈光度、眼轴长度差值、屈光度差值、角膜曲率平坦K值、角膜曲率陡峭K值、角膜平坦E值及角膜陡峭E值均符合正态性分布,采用(±s)进行描述。健眼和患眼各生物学参数的比较采用配对t检验;按年龄段分为8~10岁组和11~15岁组,采用Pearson相关系数和线性回归分析双眼眼轴长度差值和屈光度差值的相关性。

结果

70例(140只眼)患者中,男性28例(56只眼),占40%;女性42例(84只眼),占60%。右眼近视患者51例(51只眼),占72.86%;左眼近视患者19例(19只眼),占27.14%。患眼的眼轴长度为(24.49±0.84)mm,健眼的眼轴长度为(23.54±0.73)mm,两组之间差异具有统计学意义(t=15.626,P<0.05);患眼等效球镜度为(-2.39±1.05)D,健眼等效球镜度为(-0.07±0.32)D,双眼差异具有统计学意义(t=-18.214,P<0.05);患眼角膜曲率平坦K值为(42.74±1.28),健眼角膜曲率平坦K值为(42.75±1.29),双眼差异无统计学意义(t=0.344,P>0.05);患眼角膜曲率陡峭K值为(44.03±1.44),健眼角膜曲率陡峭K值为(43.92±1.38),双眼差异具有统计学意义(t=-3.392,P<0.05);患眼角膜平坦E值为(0.64±0.09),健眼角膜平坦E值为(0.66±0.11),双眼差异具有统计学意义(t=2.672,P<0.05),患眼角膜陡峭E值为(0.50±0.20),健眼角膜陡峭E值为(0.53±0.20),双眼差异无统计学意义(t=1.226,P>0.05)。总体、8~10岁组及11~15岁组患者双眼眼轴长度的差值分别为(0.94±0.50)mm、(0.78±0.43)mm及(1.07±0.52)mm,屈光度的差值分为(-2.30±1.05)D、(-2.01±1.05)D及(-2.66±1.00)D,各组双眼眼轴长度差值与屈光度差值之间的相关性具有统计学意义(r=-0.850,-0.835,-0.792,P<0.05);使用双眼眼轴长度差值与屈光度差值构建一元线性回归方程,分别为ŷ=-1.788x-0.624、ŷ=-2.054x-0.421及ŷ=-1.53x-1.024。8~15岁总体患者眼轴长度差值每增加1 mm,近视屈光度差值则增加-1.79 D;8~10岁患者眼轴长度差值每增大1 mm,近视屈光度差值则增加-2.05 D;11~15岁患者眼轴长度差值每增加1 mm;近视屈光度差值则增加-1.53 D。

结论

屈光参差影响眼轴长度、角膜曲率陡峭K值及角膜平坦E值等屈光参数,眼轴长度增长与近视屈光度增长紧密相关,8~15岁少年儿童眼轴长度差值每增加1 mm,近视屈光度差值增加-1.79 D。

Objective

The aim of this study was to assess the impact of monocular myopic anisometropia on the refractive parameters of children′s eyes and analyze the correlation between axial changes and refractive changes.

Methods

From July 2017 to May 2020, 70 cases (140 eyes) of children with monocular myopic anisometropia were collected from the Eye Center of Beijing Tongren Hospital affiliated to Capital Medical University. Among them, there were 28 males (56 eyes) and 42 females (84 eyes), aged 8 to 15 years with an average age of (11.0±1.9) years. All patients were measured for axial length, corneal curvature flatness K value, corneal curvature steepness K value, corneal flatness E value, and corneal steepness E value. Astigmatic refraction and calculation of equivalent spherical diopter were performed. The patients′ age, axial length, equivalent spherical refractive index, D-value of axial length, D-value of refractive index, corneal curvature flatness K value, steep K value, corneal flatness E value, and steep E value conformed to a normal distribution, and were described by ±s. The biological parameters between healthy and affected eyes was compared using paired t testing. According to age range, they were divided into 8 to 10 years old group and 11 to 15 years old group. The correlation between D-value of binocular axial length and D-value of refractive index were performed Pearson correlation coefficient and linear regression analysis.

Results

Among 70 patients (140 eyes), there were 28 males (56 eyes), accounting for 40%, and 42 females (84 eyes), accounting for 60%. There were 51 patients (51 eyes) with right myopia, accounting for 72.86%, and 19 patients (19 eyes) with left myopia, accounting for 27.14%. The axial length of the affected eye was (24.49±0.84) mm, while the axial length of the healthy eye was (23.54±0.73) mm. There were statistically significant differences between the two groups (t=15.626, P<0.05). The equivalent spherical diopter of the affected eye and the healthy eye was (-2.39±1.05) D and (-0.07±0.32) D, respectively. The difference between the two eyes was statistically significant (t=-18.214, P<0.05). The K value of corneal curvature flatness in the affected eye was (42.74±1.28), while the K value of corneal curvature flatness in the healthy eye was (42.75±1.29). There was no statistically significant difference between the two eyes (t=0.344, P>0.05). The K value of corneal curvature in the affected eye was (44.03±1.44), while the K value of corneal curvature in the healthy eye was (43.92±1.38). The difference between the two eyes was statistically significant (t=-3.392, P<0.05). The E value of corneal flatness in the affected eye was (0.64±0.09), while the E value of corneal flatness in the healthy eye was (0.66±0.11). The difference between the two eyes was statistically significant (t=2.672, P<0.05). The E value of corneal steepness in the affected eye was (0.50±0.20), while the E value of corneal steepness in the healthy eye was (0.53±0.20). There was no statistically significant difference between the two eyes (t=1.226, P>0.05). The differences in binocular axial length among patients in the overall, 8 to10 year old group, and 11 to15 year old group were (0.94±0.50) mm, (0.78±0.43) mm, and (1.07±0.52) mm, respectively. The differences in refractive power were divided into (-2.30±1.05) D, (-2.01±1.05) D, and (-2.66±1.00) D. The correlation between the differences in binocular axial length and refractive power in each group was statistically significant (r=-0.850, -0.835, -0.792; P<0.05). A univariate linear regression equation using the difference in binocular axial length and diopter was constructed, denoted by ŷ=- 1.788x-0.624, ŷ=- 2.054x-0.421, ŷ=- 1.53x-1.024, which suggesting that D-value of the myopia diopter would increase by -1.79 D if D-value of the axial length increased for every 1 mm in children aged 8 to 15 year old; D-value of the myopia diopter would increase by -2.05 D if D-value of the axial length increased for every 1 mm in children aged 8 to 10 year old; D-value of the myopia diopter would increase by -1.53 D if D-value of the axial length increased for every 1 mm in children aged 11 to 15 year old.

Conclusions

Anisometropia affects refractive parameters such as axial length, corneal curvature steepness K value, and corneal flatness E value. Axial growth is closely related to the growth of myopia. Every 1 mm increase in axial difference will cause 1.79 D refractive error change within the children aged between 8 to 15 years old.

表1 健眼与患眼屈光生物学参数的比较(±s)
图1 8~15岁屈光参差患者眼轴长度变化与近视屈光度变化的相关性
图2 8~10岁屈光参差患者眼轴长度变化与近视屈光度变化的相关性
图3 11~15岁屈光参差患者眼轴长度变化与近视屈光度变化的相关性
[1]
Vincent SJ, Collins MJ, Read SA, et al. Myopic anisometropia: ocular characteristics and aetiological considerations[J]. Clin Exp Optom, 2014, 97(4): 291-307.
[2]
Pointer JS, Gilmartin B. Clinical characteristics of unilateral myopic anisometropia in a juvenile optometric practice population [J]. Ophthalmic Physiol Opt, 2004, 24(5): 458-463.
[3]
Takahashi Y, Kang H, Kakizaki H. Axial globe length in congenital ptosis[J] J Pediatr Ophthalmol Strabismus, 2015, 52(3): 177-182.
[4]
Chen Z, Xue F, Zhou J, et al. Prediction of Orthokeratology Lens Decentration with Corneal Elevation[J]. Optom Vis Sci, 2017, 94(9): 903-907.
[5]
Badmus SA, Ajaiyeoba AI, Adegbehingbe BO, et al. Axial length/corneal radius of curvature ratio and refractive status in an adult Nigerian population [J]. Niger J Clin Pract, 2017, 20(10): 1328-1334.
[6]
Olsen T. Calculation of intraocular lens power: a review[J]. Acta Ophthalmol Scand, 2007, 85(5): 472-485.
[7]
Borchert M, Tarczy-Hornoch K, Cotter SA, et al. Anisometropia in Hispanic and african american infants an and young children the multi-ethnic pediatric eye disease study[J]. Ophthalmology, 2010, 117(1): 148-153.
[8]
Lovasik JV, Szymkiw M. Effects of aniseikonia, anisometropia, accommodation, retinal illuminance, and pupil size on stereopsis[J]. Invest Ophthalmol Vis Sci, 1985, 26(5): 741-750.
[9]
Zhang Y, Chen Y. Effect of orthokeratology on axial length elongation in anisomyopic children [J]. Optom Vis Sci, 2019, 96(1): 43-47.
[10]
Na M, You A. The effect of orthokeratology on axial length elongation in children with myopia.Contralateral comparison study[J]. Jpn J Ophthalmol, 2018, 62(3): 327-334.
[11]
孙笑笑,张钰,陈跃国. 近视性屈光参差病因学与矫治方法的研究进展[J].眼科新进展202141(4):386-390,396.
[12]
Lin Z, Vasudevan B, Liang Y, et al. The association between nearwork-induced transient myopia and progression of refractive error: A 3-year cohort report from Beijing Myopia Progression Study [J]. J Optom, 2021, 14(1): 44-49.
[13]
Robbins RA, Maurer D, Hatry A, et al. Effects of normal and abnormal visual experience on the development of opposing aftereffects for upright and inverted faces[J].Dev Sci, 2012, 15( 2): 194-203.
[14]
Flitcroft DI. Is myopia a failure of homeostasis[J]. Exp Eye Res, 2013, 114:16-24.
[15]
Xu Z, Wu Z, Wen Y, et al. Prevalence of anisometropia and associated factors in Shandong school-aged children [J]. Front Public Health, 2022, 10: 1072574.
[16]
张学辉,艾欣,李盼,等. 3~12岁儿童屈光状态与眼部生物学参数的相关关系[J].国际眼科杂志202020(80):1409-1412.
[17]
Huang J, Wen D, Wang Q, et al. Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-analysis[J]. Ophthalmology, 2016, 123(4): 697-708.
[18]
Chen J, Liu S, Zhu Z, et al. Axial length changes in progressive and non progressive myopic children in China[J]. Graefe′s Archive for Clinical and Experimental Ophthalmology, 2023, 261(5): 1493-1501.
[19]
Xie P, Guo X. Chinese Experiences on Orthokeratology[J]. Eye Contact Lens, 2016, 42(1): 43-47.
[20]
Chen S, Liu X, Sha X, et al. Relationship between axial length and spherical equivalent refraction in Chinese children[J]. Advances in Ophthalmology Practice and Research, 2021, 1(2): 100010.
[21]
Li T, Jiang B, Zhou X. Axial length elongation in primary school-age children: a 3-year cohort study in Shanghai[J]. BMJ Open, 2019, 9(10): e029896.
[22]
Gu T, Gong B, Lu D, et al. Influence of Corneal Topographic Parameters in the Decentration of Orthokeratology[J]. Eye Contact Lens, 2019, 45(6): 372-376.
[23]
Liu S, He X, Wang J, et al. Association between axial length elongation and spherical equivalent progression in Chinese children and adolescents[J].Ophthalmic Physiol Opt, 2022, 42(5): 1133-1140.
[24]
Mutti DO, Mitchell GL, Jones LA, et al. Axial growth and changes in lenticular and corneal power during emmetropization in infants[J]. Invest Ophthalmol Vis Sci, 2005, 46(9): 3074-3080.
[25]
李丹,崔巍,高伟. 视性屈光参差眼的屈光要素分析[J]. 临床眼科杂志201523(6):531-533.
[26]
Tekin K, Cankurtaran V, Inanc M, et al. Effect of myopic anisometropia on anterior and posterior ocular segment parameters[J]. International Ophthalmology, 2016, 37(2), 377-384.
[27]
王海英,赵堪兴,高雅萍,等. 近视屈光参差眼的角膜地形图和生物超声测定的分析[J],眼科新进展200626:841-844.
[28]
Jong M, Sankaridurg P, Naduvilath TJ, et al. The Relationship between Progression in Axial Length/corneal Radius of Curvature Ratio and Spherical Equivalent Refractive Error in Myopia[J]. Optometry and Vision Science, 2018, 95(10): 921-929.
[29]
Li Y, Liu J, Qi P. The increasing prevalence of myopia in junior high school students in the Haidian District of Beijing, China: a10-year population-based survey[J] BMC Ophthalmol2017, 17(1): 88.
[30]
崔歌,陈迪,李莹. 性激素在近视发生发展中的作用机制研究进展[J] 眼科新进展202343(1):61-65.
[31]
何青,王斌,杨蕾,等. 屈光参差与主导眼的相关性研究[J]. 国际眼科杂志201212(3):430-431.
[1] 娜荷雅, 朱丹. 红光疗法在儿童近视眼防控中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 252-256.
[2] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[3] 任美琪, 李俊红, 冯张青. 间歇性外斜视新型热点问题的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 162-166.
[4] 赵艳, 朱丹. 低浓度阿托品在儿童近视眼防控中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 124-128.
[5] 郝壮, 马济远, 何梦梅, 李兴育, 陆新婷, 武静, 周健. 迟发性囊袋阻滞综合征临床特征、治疗方法及其疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 70-75.
[6] 曹宇, 苗泽群, 王凯, 王乐今. 关注交联技术的发展及巩膜交联技术在控制近视发展中的潜在应用价值[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 65-69.
[7] 宗晨曦, 肖林, 宋红欣. 人工智能视力筛查在近视眼防控中的应用研究与展望[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 60-64.
[8] 付玥川, 陶晨. 角膜塑形镜对儿童青少年低度近视眼进展控制长期效果及其影响因素的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 287-292.
[9] 张宁宁, 慕璟玉, 马晓玲, 李小龙, 王雁, 赵勇. 儿童青少年高度近视眼眼底特征的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 252-256.
[10] 张瑞恒, 董力, 魏文斌. 雷帕霉素靶蛋白复合体1通路在近视眼进展中的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 247-251.
[11] 王子杨, 杨文利. 关注屈光性白内障手术时代的精准眼球生物测量[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 193-197.
[12] 许馨月, 陈涛, 苏玉婷, 张作明. 青少年近视眼预防与控制技术研究的新进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 173-177.
[13] 曹晓光, 何燕玲, 鲍永珍, 王凯, 赵明威. 飞秒激光小切口角膜基质透镜取出术矫正散光的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 57-62.
[14] 吴彬阁, 何婧, 常颖, 赵世强, 接英. 内蒙古自治区包头市各民族青少年眼部生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 31-36.
[15] 刘天龙. 改良型超声乳化手术治疗高度近视合并白内障疗效观察[J]. 中华老年病研究电子杂志, 2023, 10(01): 30-33.
阅读次数
全文


摘要