切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2020, Vol. 10 ›› Issue (02) : 123 -128. doi: 10.3877/cma.j.issn.2095-2007.2020.02.010

所属专题: 青少年近视防控

综述

多模式眼底影像技术在高度近视眼检查中的应用进展
牛红蕾1, 张东昌2,(), 杨璐2   
  1. 1. 030000 太原,山西医科大学第一临床医学院2017级硕士研究生
    2. 030000 太原,山西省眼科医院玻璃体视网膜科
  • 收稿日期:2020-02-01 出版日期:2020-04-28
  • 通信作者: 张东昌
  • 基金资助:
    山西省科技厅基础研究项目青年科技研究基金项目(201601D202093); 山西省卫生计生委基金项目(2017098)

Advances on the application of multi-mode funds imaging in high myopia

Honglei Niu1, Dongchang Zhang2,(), Lu Yang2   

  1. 1. Master′s degree 2017, First Medical College of Shanxi Medical University, Taiyuan 030000, China
    2. Department of Vitreoretinal, Shanxi Eye Hospital, Taiyuan 030000, China
  • Received:2020-02-01 Published:2020-04-28
  • Corresponding author: Dongchang Zhang
引用本文:

牛红蕾, 张东昌, 杨璐. 多模式眼底影像技术在高度近视眼检查中的应用进展[J]. 中华眼科医学杂志(电子版), 2020, 10(02): 123-128.

Honglei Niu, Dongchang Zhang, Lu Yang. Advances on the application of multi-mode funds imaging in high myopia[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2020, 10(02): 123-128.

近年来,随着近视眼的患病率逐年上升,高度近视眼的患病率也随之增长。高度近视眼的发展,会逐步导致眼底病理性改变,从而影响视功能,造成日常生活质量下降。定期检查高度近视眼的眼底,并获得可靠指标,对全面准确评估高度近视眼的发展程度十分重要。鉴于眼底影像技术能够准确评估眼底结构和眼外形的改变,故该技术在高度近视眼检查中受到高度关注。本文中笔者对光学相干断层扫描血管成像技术、微视野计及眼底自发荧光等多模式眼底影像技术在高度近视眼检查中的应用进展进行综述。

In recent years, the prevalence of myopia has been increasing year by year with the prevalence of high myopia (HM). The development of HM will gradually lead to a variety of myopic fundus pathological changes, which affect the visual function, resulting in the decrease in the quality of daily life. It is very important to conduct a comprehensive and accurate assessment of HM by detecting HM and obtaining the reliable results of indicators. Fundus imaging technology enables accurate assessment of fundus structure and eye shape changes. Therefore, it has been paid more attention. This paper focuses on the application of multi-mode fundus imaging techniques such as optical coherence tomography angiography, microperimeter, and autofluorescence in HM, which to refresh the knowledge of multi-mode fundus imaging techniques for the clinical technician.

图1 基于黄斑功能评估仪微视野计检测的高度近视眼患者黄斑区视网膜照相 图A、图B及图C示高度近视眼患者黄斑区视网膜光敏感度,检测范围为黄斑区10°范围内的区域;光标数值的大与小,表示相应区域视网膜光敏感度的好与差;图D示黄斑功能评估仪微视野计检测患者黄斑区固视的稳定性;图E示63%和95%的双曲线椭圆面积;图F示以直方图的形式表示视网膜光敏感度的阈值频率
[1]
Wu PC, Huang HM, Yu HJ, et al. Epidemiology of myopia[J]. The Asia-Pacific Journal of Ophthalmology (Phila), 2016, 5(6): 386-393.
[2]
Leo SW. Current approaches to myopia control[J]. Current Opinion in Ophthalmology, 2017, 28(3): 267-275.
[3]
Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopiaand temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042.
[4]
Sambhav K, Grover S, Chalam KV. The application of optical coherence tomography angiography in retinal diseases[J]. Survey of Ophthalmology, 2017, 62(6): 838-866.
[5]
Zhang A, Zhang Q, Chen CL, et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. Journal of Biomedical Optics, 2015, 20(10): 100901.
[6]
Rosenfeld PJ, Durbin MK, Roisman L, et al. ZEISS Angioplex™ spectral domain optical coherence tomography angiography: technical aspects[J]. Developments in Ophthalmology, 2016, 56: 18-29.
[7]
Stanga PE, Tsamis E, Papayannis A, et al. Swept-source optical coherence tomography Angio™ (Topcon Corp, Japan): technology review[J]. Developments in Ophthalmology, 2016, 56: 13-17.
[8]
Jia YL, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710-4725.
[9]
吕湘云,艾明. 光学相干断层扫描血管成像(OCTA)在黄斑疾病中的应用进展[J]. 眼科新进展201939 (1):94-97.
[10]
Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(1): 45-50.
[11]
Jia YL, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J]. Proceedings of the National Academy of Sciences of the USA, 2015, 112(18): E2395-E2402.
[12]
Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications[J]. Progress in Retinal and Eye Research, 2017, 60: 66-100.
[13]
Chen FK, Viljoen RD, Bukowska DM. Classification of image artefacts in optical coherence tomography angiography of the choroid in macular diseases[J]. Clinical & Experimental Ophthalmology, 2016, 44(5): 388-399.
[14]
Choi QJ, Moult EM, Waheed NK, et al. Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy[J]. Ophthalmology, 2015, 122(12): 2532-2544.
[15]
Hayashi K, Ohno-Matsui K, Shimada N. Long-term pattern of progression of myopic maculopathy: a natural history study[J]. Ophthalmology, 2010, 117(8): 1595-1611.
[16]
Querques L, Giuffrè C, Corvi F. Optical coherence tomography angiography of myopic choroidal neovascularisation[J]. British Journal of Ophthalmology, 2017, 101(5): 609-615.
[17]
Miyata M, Ooto S, Hata M, et al. Detection of myopic choroidal neovascularization using optical coherence tomography angiography[J]. American Journal of Ophthalmology, 2016, 165: 108-114.
[18]
Bruyère E, Miere A, Cohen SY, et al. Neovascularzation secondary to high myopia imaged by optical coherence tomography angiography[J]. Retina, 2017, 37(11): 2095-2101.
[19]
Ishida T, Jonas JB, Ishii M, et al. Peripapillary arterial ring of Zinn-Haller in highly myopia eyes as detected by optical coherence tomography angiography[J]. Retina, 2017, 37(2): 299-304.
[20]
郑志坤,黎铧,李娟娟. 高度近视眼视盘旁Zinn-Haller动脉环荧光素血管造影特征分析[J]. 眼科新进展201535(5):479-481.
[21]
Jonas JB, Holbach L, Panda-Jonas S. Peripapillary arterial circle of Zinn-Haller: location and spatial relationships with myopia[J]. PLoS ONE, 2013, 8(11): e78867.
[22]
陈秋莹,贺江南,华怡红,等. 高度近视继发视盘周围脉络膜空腔视盘血流密度的变化[J]. 国际眼科杂志201717(7):1307-1312.
[23]
Chen Q, He J, Hua YH, et al. Exploration of peripapillary vessel density in highly myopic eyes with peripapillary intrachoroidal cavitation and its relationship with ocular parameters using optical coherence tomography angiography[J]. Clinical and Experimental Ophthalmology, 2017, 45(9): 884-893.
[24]
Spaide RF, Akiba M, Ohno-Matsui K. Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography[J]. Retina, 2012, 32(6): 1037-1044.
[25]
Ohno-Matsui K, Akiba M, Moriyama M, et al. Intrachoroidal cavitation in macular area of eyes with pathologic myopia[J]. American Journal of Ophthalmology, 2012, 154(2): 382-393.
[26]
徐吉,魏璐,俞素勤,等. 病理性近视患者黄斑功能的微视野检查[J]. 中华眼底病杂志201127(1):52-55.
[27]
Hirooka K, Misaki K, Nitta E, et al. Comparison of macular integrity assessment (MAIA™), MP-3, and the humphrey field analyzer in the evaluation of the relationship between the structure and function of the macula[J]. PloS ONE, 2016, 11(3): e0151000.
[28]
Timberlake GT, Mainster MA, Webb RH, et al. Retinal locali-zation of scotomata by scanning laser ophthalmoscopy[J]. Investigative Ophthalmology & Visual Science, 1982, 22(1): 91-97.
[29]
Acton JH, Greenstein VC. Fundus-driven perimetry (micro-perimetry) compared to conventional static automated perimetry: similarities, differences, and clinical applications[J]. Canadian Journal of Ophthalmology, 2013, 48(5): 358-363.
[30]
Fujiwara A, Shiragami C, Manabe S, et al. Normal values of retinal sensitivity determined by macular integrity assessment[J]. Nippon Ganka Gakkai Zasshi, 2014, 118(1): 15-21.
[31]
刘会,王旭. 微视野仪在视功能评估中的应用[J]. 法医学杂志201430(3):194-196.
[32]
Dolar-Szczasny J, Šwięch-Zubilewicz A, Mackiewicz J. Macular integrity assessment and fixation analysis in chronic central serous chorioretinopathy[J]. Journal of Ophthalmol, 2018, 2018: 1-6.
[33]
Wang JW, Jie CH, Tao YJ, et al. Macular integrity assessment to determine the association between macular microstructure and functional parameters in diabetic macular edema[J]. Ophthalmology, 2018, 11(7): 1185-1191.
[34]
Mukherjee D, Lad EM, Vann RR, et al. Correlation between macular integrity assessment and optical coherence tomography imaging of ellipsoid zone in macular telangiectasia type 2[J]. Investigative Ophthalmology & Visual Science, 2017, 58(6): BI0291-BI0299.
[35]
Wu ZC, Guymer RH, Jung CJ, et al. Measurement of retinal sensitivity on tablet devices in age-related macular degeneration[J]. Translational Vision Science & Technology, 2015, 4(3): 13.
[36]
Scassa C, Cupo G, Bruno M, et al. Optical devices in highly myopic eyes with low vision: a prospective study[J]. Clinica Terapeutica, 2012, 163(3): 115-120.
[37]
Qin YW, Zbu MJ, Qu XM, et al. Regional macular light sensitivity changes in myopic Chinese adults: an MP-1 Study[J]. Investigative Ophthalmology & Visual Science, 2010, 51(9): 4451-4457.
[38]
Gella L, Raman R, Sharma T. Evaluation of in vivo human retinal morphology and function in myopes[J]. Current Eye Research, 2011, 36(10): 943- 946.
[39]
Wang YY, Ye J, Shen M, et al. Photoreceptor degeneration is correlated with the deterioration of macular retinal sensitivity in high myopia[J]. Investigative Ophthalmology & Visual Science, 2019, 60(8): 2800-2810.
[40]
Mandelcorn MS, Podbielski DW, Mandelcorn ED. Fixation stability as a goal in the treatment of macular disease[J]. Canadian Journal of Ophthalmology, 2013, 48(5): 364-367.
[41]
周姝,夏文涛,刘瑞珏,等. 微视野检查评定视觉功能的临床应用研究进展[J]. 眼科新进展201535(3):293-297.
[42]
Molina-Martín A, Pérez-Cambrodí RJ, Piñero DP. Current clinical application of microperimetry: a review[J]. Seminars in Ophthalmology, 2018, 33(5): 620- 628.
[43]
Zhu XJ, He W, Zhang K,et al. Fixation characteristics in highly myopic eyes: the shanghai high myopia study[J]. Scientific Reports, 2019, 9(1): 6502.
[44]
栗改云,贾亚丁,张棉花. 正常成年人中心固视点的微视野检测[J]. 中华眼底病杂志200723(6):398-400.
[45]
Raman R, Damkondwar D, Neriyanuri S, et al. Microperimetry biofeedback training in a patient with bilateral myopic macular degeneration with central scotoma[J]. Indian Journal of Ophthalmology, 2015, 63(6): 534-536.
[46]
Markowitz SN, Nido MD, Chen L. Microperimetry and retinal sensitivity estimates in low vision[J]. Canadian Journal of Ophthalmology, 2019, 54(4): e161-e163.
[47]
陈辉. 眼底自发荧光技术在眼科中的应用[J]. 国际眼科杂志20044(3):488-491.
[48]
Banda HK, Shah GK, Blinder KJ. Applications of fundus autofluorescence and widefield angiography in clinical practice.Canadian journal of ophthalmology[J]. Canadian Journal of Ophthalmology, 2019, 54(1): 11-19.
[49]
阳雪,高婷婷,龙琴. 高度近视患者眼底自发荧光的影像特征观察[J]. 临床眼科杂志201523(6):481-483.
[50]
Gabai A, Veritti D, Lanzetta P. Fundus autofluorescence applications in retinal imaging[J]. Indian Journal of Ophthalmology, 2015, 63(5): 406-415.
[51]
Calvo-Maroto AM, Cerviño A. Spotlight on fundus auto-fluorescence[J]. Clinical Optometry, 2018, 10: 25-32.
[52]
徐吉,樊莹. 自发荧光技术在病理性近视黄斑变性诊治中的研究进展[J]. 眼科新进展201030(3):290-292.
[53]
Delori FC, Dorey CK, Staurenghi G, et al. In vivo fluorescenceof the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics[J]. Investigative Ophthalmology & Visual Science, 1995, 36(3): 718-729.
[54]
Bindewa A, Kellner U. Fundus autofluorescence imaging: clinical application and diagnostic relevance[J]. Klinische Monatsblatter fur Augenheilkunde, 2020, 17(8): 64.
[55]
李慧,贾亚丁. 眼底自发荧光成像在视网膜疾病诊断中的应用[J]. 国际眼科纵览201438(1):56-61.
[56]
Yung M, Klufas MA, Sarraf D. Clinical applications of fundus autofluorescence in retinal disease[J]. International Journal of Retina and Vitreous, 2016, 2: 12.
[57]
Youssef PN, Sheibani N, Albert DM. Retinal light toxicity[J]. Eye (London, England), 2011, 25(1): 1-14.
[58]
Miere A, Capuano V, Serra R, et al. Evaluation of patchy atrophy secondary to high myopia by semiautomated sofeware for funds autofluorescence analysis[J]. Retina, 2018, 38(7): 1301-1306.
[59]
Peng XJ, Su LP. Characteristics of fundus autofluorescence in cystoid macular edema[J]. Chinese Medical Journal, 2011, 124(2): 253-257.
[60]
Klen RM, Curtin BJ. Lacquer crack lesions in pathologic myopia[J]. American Journal of Ophthalmology, 1975, 79(3): 386-392.
[61]
Xu X, Fang YX, Uramoto K, et al. Clinical features of lacquer cracks in eyes with pathologic myopia[J]. Retina, 2019, 39(7): 1265-1277.
[62]
Shi XH, Wei WB. Research progress of treatment strategies for choroidal neovascularization secondary to pathological myopia[J]. Ophthalmology in China, 2019, 55(10): 791-795.
[63]
Parodi MB, Iacono P, Sacconi R, et al. Fundus autofluorescence changes after ranibizumab treatment for subfoveal choroidal neovascularization secondary to pathologic myopia[J]. American Journal of Ophthalmology, 2015, 160(2): 322-327.
[64]
Sawa M, Gomi F, Tsujikawa M, et al. Abnormal fundus auto-fluorescence patterns in myopic choroidal neovascularisation[J]. British Journal of Ophthalmology, 2008, 92(9): 1236-1240.
[65]
Whitehead AJ, Mares JA, Danis RP. Macular pigment: a review of current knowledge[J]. Archives of Ophthalmology, 2006, 124(7): 1038-1045.
[66]
Delori FC, Fleckner MR, Goger DG, et al. Autofluorescence distribution associated with drusen in age-related macular degeneration[J]. Investigative Ophthalmology & Visual Science, 2000, 41(2): 496-504.
[67]
Rothenbuehler SP, Wolf-Schnurrbusch UEK, Wolf S. Macular pigment density at the site of altered fundus autofluorescence[J]. Graefe′s Archive for Clinical and Experimental Ophthalmology, 2011, 249(4): 499-504.
[68]
Robson AG, Moreland JD, Pauleikhoff D, et al. Macular pigment density and distribution: comparison of fundus auto-fluorescence with minimum motion photometry[J]. Vision Research, 2003, 43(16): 1765-1775.
[69]
Schmitz-Valckenberg S. Fundus autofluorescence imaging[J]. Klinische Monats- blatter fur Augenheilkunde, 2015, 232(9): 1050-1053.
[1] 张宁宁, 慕璟玉, 马晓玲, 李小龙, 王雁, 赵勇. 儿童青少年高度近视眼眼底特征的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 252-256.
[2] 周海英, 纪海霞, 佘海澄, 彭晓燕. 视盘黑色素细胞瘤多模态影像学特征的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 198-203.
[3] 姚沁楠, 万修华. 有晶状体眼后房型人工晶状体植入术与角膜屈光手术治疗高度近视眼有效性、安全性及可预测性的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 346-352.
[4] 段如月, 张天资, 晓琴, 韩永青, 佟玉兰. 光学相干断层扫描血管成像技术在康柏西普对湿性年龄相关性黄斑变性治疗效果评价中的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 140-145.
[5] 何海龙, 刘振宇, 周春媛, 张立平, 王进达, 万修华. 飞秒激光小切口角膜基质透镜切除术与有晶状体眼后房型人工晶状体植入术矫正高度近视眼疗效的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 22-28.
[6] 赵鹏飞, 柳静, 徐雯, 胡雅斌, 翟长斌, 魏文斌. 术前应用人工泪液对FS-LASIK治疗高度近视眼术后干眼自觉症状和泪膜稳定性影响的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(06): 326-332.
[7] 吉祥, 张丁丁, 毛馨遥, 周仕萍, 刘慧. Wang-Koch优化眼轴SRK/T公式预测不同眼轴长度下高度近视眼合并白内障术后屈光度准确性的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(05): 281-287.
[8] 杨宇, 姜惠, 范玮. 高度近视眼眼底血流动力学的研究进展[J]. 中华眼科医学杂志(电子版), 2020, 10(03): 183-187.
[9] 付庆东, 杨寅寅, 俞萍萍, 徐东, 孔祥筠, 刘继丽, 王露雯. Lenstar LS900光学生物测量与浸润式B型超声引导下的A型超声分段式生物测量法在高度近视眼眼轴测量中的一致性研究[J]. 中华眼科医学杂志(电子版), 2019, 09(06): 372-377.
[10] 蒋政, 王华, 罗栋强. 有晶状体眼后房型人工晶状体植入术矫正高度近视眼术后视觉质量的临床研究[J]. 中华眼科医学杂志(电子版), 2019, 09(05): 305-311.
[11] 李梦媛, 汤云霞, 张静琳, 侯金佟, 陈倩茵, 马红婕, 吴德正. 成年超高度近视眼患者黄斑区巩膜厚度及其相关影响因素[J]. 中华眼科医学杂志(电子版), 2019, 09(02): 77-82.
[12] 戴荣平, 尹心恺, 曲艺, 龙琴. 重视高度近视眼黄斑裂孔性视网膜脱离的手术治疗[J]. 中华眼科医学杂志(电子版), 2018, 08(03): 97-102.
[13] 宋耀文, 贺瑞, 马秋霞. 高度近视眼行准分子激光原位角膜磨镶术后长期稳定性的研究[J]. 中华眼科医学杂志(电子版), 2018, 08(01): 15-22.
[14] 周迎霞, 王芳芳. 飞秒激光辅助准分子激光原位角膜磨镶术治疗超高度近视眼的疗效观察[J]. 中华眼科医学杂志(电子版), 2017, 07(03): 121-127.
[15] 周迎霞, 贺瑞, 王芳芳. 两种角膜屈光手术方式治疗高度近视眼的疗效观察[J]. 中华眼科医学杂志(电子版), 2017, 07(02): 66-71.
阅读次数
全文


摘要