切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (02) : 77 -82. doi: 10.3877/cma.j.issn.2095-2007.2019.02.003

论著

成年超高度近视眼患者黄斑区巩膜厚度及其相关影响因素
李梦媛1, 汤云霞1, 张静琳1, 侯金佟1, 陈倩茵1, 马红婕1, 吴德正1,()   
  1. 1. 510060 广州爱尔眼科医院眼底病科
  • 收稿日期:2019-01-25 出版日期:2019-04-28
  • 通信作者: 吴德正
  • 基金资助:
    国家自然科学青年基金(81500749); 广州市越秀区科技工业和信息化局科技计划项目(2016-WS-010)

Scleral thickness in macular region and its related factors in adult patients with super-high myopia

Mengyuan Li1, Yunxia Tang1, Jinglin Zhang1, Jintong Hou1, Qianyin Chen1, Hongjie Ma1, Dezheng Wu1,()   

  1. 1. Department of Fundus Disease, Guangzhou Aier Eye Hospital, Guangzhou 510060, China
  • Received:2019-01-25 Published:2019-04-28
  • Corresponding author: Dezheng Wu
引用本文:

李梦媛, 汤云霞, 张静琳, 侯金佟, 陈倩茵, 马红婕, 吴德正. 成年超高度近视眼患者黄斑区巩膜厚度及其相关影响因素[J]. 中华眼科医学杂志(电子版), 2019, 09(02): 77-82.

Mengyuan Li, Yunxia Tang, Jinglin Zhang, Jintong Hou, Qianyin Chen, Hongjie Ma, Dezheng Wu. Scleral thickness in macular region and its related factors in adult patients with super-high myopia[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(02): 77-82.

目的

观察成年超高度近视(等效球镜度≥-9.00 D)患者黄斑区巩膜厚度的改变,并分析巩膜厚度与年龄、眼轴长度、屈光度数及最佳矫正视力的关系。

方法

纳入2016年6月至2018年5月就诊于广州爱尔眼科医院的超高度近视患者112例(195只眼)为研究对象。其中,男性50例(84只眼),女性62例(111只眼);年龄18~67岁,平均(33.10±13.27)岁。采用扫频光学相干断层扫描测量黄斑中心凹处及由中心凹向鼻侧、颞侧各500 μm、1000 μm及1500 μm的巩膜厚度值,共测量7个点位。采用单因素方差分析比较超高度近视眼黄斑区不同部位的巩膜厚度有无差异,当差异有统计学意义时,再用最小显著性差异法进行两两比较,计算相关系数并采用多元回归分析法黄斑中心凹处巩膜厚度和眼轴长度、年龄、屈光度数及最佳矫正视力的关系。

结果

本研究纳入的患者平均最佳矫正视力(0.68±0.31),区间为0.01~1.00;平均屈光度数(-14.68±4.31)D,区间为-9.00~-25.25 D;平均眼轴长度(29.14±2.06)mm,区间为25.20~36.00 mm。中心凹颞侧1500 μm处的巩膜厚度均值最小,为(281.17±93.84)μm;中心凹处巩膜厚度均值最大,为(318.13±87.49)μm。颞侧1500 μm处的巩膜厚度与颞侧500 μm、中心凹处和鼻侧相比较薄,差异有统计学意义(t=-2.78,-3.90,-3.37,-2.85,-3.07;P<0.05);颞侧1000 μm处的巩膜厚度与中心凹处、鼻侧500 μm和鼻侧1500 μm处相比较薄,差异有统计学意义(t=-2.87,-2.35,-2.05;P<0.05)。中心凹处巩膜厚度与年龄呈轻度负相关(r=-0.371,P<0.05);与眼轴长度呈中度负相关(r=-0.573,P<0.05);与屈光度数和最佳矫正视力呈中度正相关(r=0.469,0.414;P<0.05)。多元线性回归分析表明,眼轴长度和年龄是影响中心凹处巩膜厚度的独立相关因素(β=-18.436,-1.347;P<0.05)。

结论

扫频光学相干断层扫描测量成年超高度近视眼患者黄斑区巩膜全层图像的方法,是无创、实用且简单易行的。本研究结果提示巩膜的病理变化,可能在超高度近视眼并发症的发生与发展过程中发挥作用。测量高度近视眼患者黄斑区巩膜厚度,可作为后巩膜葡萄肿观察的重要指标之一,从而为高度近视眼的防控提供客观依据。

Objective

The aim of this study was to investigate the macular scleral thickness in super-high myopic eyes (spherical equivalent ≥ -9.00 D) of adults and estimate the correlation among scleral thickness with age, axial length, spherical equivalent and best corrected visual acuity.

Methods

195 eyes of 112 adults, among whom with super-high myopia included in this study from June 2016 to May 2018 in Guangzhou Aier Eye Hospital was 84 eyes from 50 males and 111 eyes from 62 females. The age ranged from 18 to 67, with an averaged of (33.10±13.27). Swept-source optical coherence tomography wasused to measure the macular scleral thickness among 7 meridians in a 500 μm intervals and range of 1500 μm for each from fovea toward temporal and nasal lateral, totally 7 sites. The differences of the macular scleral thickness in adults with super-high myopic were observed and the correlation of the scleral thickness with age, spherical equivalent, axial length, and best corrected visual acuity were analyzed.

Results

The average of best corrected visual acuity, spherical equivalent, and axial length was (0.68±0.31) with the interval of 0.01—1.00; (-14.68±4.31) D with the interval of -9.00—-25.25 D; and (29.14±2.06) mm with the interval of 25.20—36.0 mm, respectively. The scleral thickness at 1500 μm from fovea toward temporal lateral was thinnest [(281.17±93.84) μm], while thickest at macula central fovea [(318.13±87.49) μm]. The scleral thickness at 1500 μm from fovea toward temporal lateral was thinner than that at 500 μm from fovea toward temporal lateral, macula central fovea, and nasal lateral (t=-2.78, -3.90, -3.37, -2.85, -3.07; P<0.05). The scleral thickness at 1000 μm from fovea toward temporal lateral was thinner than that at macula central fovea, 500 μm and 1500 μm from fovea toward nasal lateral (t=-2.87, -2.35, -2.05; P<0.05). The scleral thickness at the macula central fovea was slightly negatively correlated with age and moderately with axial length (r=-0.371, -0.573; P<0.05); while, moderately positively with spherical equivalent and best corrected visual acuity (r=0.469, 0.414; P<0.05). Multivariant analysis showed that axial lengthand age (β=-18.436, -1.347; P<0.05) were independent factors affecting the scleral thickness.

Conclusions

Swept-source optical coherence tomography is noninvasive and feasible to measure the scleral thickness of macula in adults with super-high myopia. The results indicates that abnormality of the sclera might play a role in the development of complication of super-high myopia. Measuring the macular scleral thickness in adults with super-high myopia could be regarded as one of the important indicators for the observation on posterior staphyloma, which provides an objective basis for the prevention and control of high myopia.

图1 DRI OCT Triton扫频光学相干断层扫描测量超高度近视眼黄斑区巩膜厚度图像 图中显示7个取值位点
图2 超高度近视眼眼底彩像及扫频光学相干断层扫描图像 图A为无后巩膜葡萄肿眼的图像;图B、C为有后巩膜葡萄肿眼的图像
图3 中心凹处巩膜厚度与年龄、屈光度数、眼轴长度及最佳矫正视力相关性分析的散点图 图A示中心凹处巩膜厚度与年龄呈负相关;图B为中心凹处巩膜厚度与屈光度数呈正相关;图C为中心凹处巩膜厚度与眼轴长度呈负相关;图D为中心凹处巩膜厚度与最佳矫正视力呈正相关
[1]
王应,汪润芳. 我国学生近视眼患病率的新资料述评[J]. 中国学校卫生2002, 23(3):279-281.
[2]
Grossniklaus HE, Green WR. Pathologic findings in pathologic myopia[J]. Retina, 1992, 12(2): 127-133.
[3]
张承芬. 眼底病学[M]. 第2版. 北京:人民卫生出版社,2010:496-504.
[4]
张惠蓉. 眼底病图谱[M]. 北京:人民卫生出版社,2007:467-472.
[5]
Seike C, Kusaka S, Sakagami K, et al. Reopening of macular holes in highly myopic eyes with retinal detachments[J]. Retina, 1997, 17(1): 2-6.
[6]
张娅萍,毛广运,王毓琴,等. 后巩膜加固手术治疗病理性近视黄斑劈裂的疗效观察[J]. 中华眼底病杂志2015, 31(4):324-328.
[7]
Ramrattan RS, Wolfs RC, Jonas JB, et al. Determinants of optic disc characteristics in a general population: The Rotterdam Study[J]. Ophthalmology, 1999, 106(8): 1588-1596.
[8]
Vitale S, Sperduto RD, Ferris FL. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004[J]. Arch Ophthalmol, 2009, 127(12): 1632-1639.
[9]
Xu L, Li Y, Wang S, et al. Characteristics of highly myopic eyes: the Beijing Eye Study[J]. Ophthalmology, 2007, 114(1): 121-126.
[10]
Osher RH, Golnik KC, Barrett G, et al. Intentional extreme anisometropic pseudophakic monovision: new approach to the cataract patient with longstanding diplopia[J]. J Cataract Refract Surg, 2012, 38(8): 1346-1351.
Siam A. Macular hole with central retinal detachment in high myopia with posterior staphyloma[J]. Br J Ophthalmol, 1969, 53(1): 62-63.
[11]
Hotchkiss ML, Fine SL. Pathologic myopia and choroidal neovascularization[J]. Am J Ophthalmol, 1981, 91(2): 177-183.
[12]
Takano M, Kishi S. Foveal retinoschisis and retinal detachment in severely myopic eyes with posterior staphyloma[J]. Am J Ophthalmol, 1999, 128(4): 472-476.
[13]
Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eye[J]. Am J Ophthalmol, 1971, 71(Pt1): 42-53.
[14]
戚沆,陈长征,翁铭,等. 成年高度近视患者脉络膜厚度及其相关影响因素分析[J]. 中华实验眼科杂志2014, 32(5):439-442.
[15]
曾婧,丁小燕,李加青,等. 中国人黄斑区脉络膜厚度值及其影响因素分析[J]. 中华眼底病杂志2011, 27(5):450-453.
[16]
Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes[J]. AM J Ophthalmol, 2009, 147(5): 811-815.
[17]
Fujiwara T, Imamura Y, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes[J]. AM J Ophthalmol, 2009, 148(3): 445-450.
[18]
周彦萍,汪枫桦,孙晓东. 高度近视脉络膜厚度的加强深度成像检查研究进展[J]. 中华眼底病杂志2013, 29(5):539-541.
[19]
张胜娟,闫素霞,吕丽娜,等. 超高度近视眼的影像学观察[J]. 中国实用眼科杂志2014, 32(10):1209-1212.
[20]
邓哲. 超高度近视治疗现状研究进展[J]. 现代医药卫生2013, 29(22):3416-3418.
[21]
赵云娥,王勤美,瞿佳,等. 超高度轴性近视白内障患者的视力预后及其影响因素[J].中华眼科杂志2003, 39(9):537-540.
[22]
Gentle A, Liu Y, Martin JE, et al. Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia[J]. J Biol Chem, 2003, 278(19): 16587-16594.
[23]
McBrien NA, Lawlor P, Gentle A. Scleral remodeling during the development of and recovery from axial myopia in the tree shrew[J]. Invest Ophthalmol Vis Sci, 2000, 41(12): 3713-3719.
[24]
Guggenheim JA, McBrien NA. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew[J]. Invest Ophthalmol Vis Sci, 1996, 37(7): 1380-1395.
[25]
Gao H, Frost MR, Siegwart JT, et al. Patterns of mRNA and protein expression during minus-lens compensation and recovery in tree shrew sclera[J]. Mol Vis, 2011, 17: 903-919.
[26]
Shelton L, Rada JA. Inhibition of human scleral fibroblast cell attachment to collagen type I by TGFBIp[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3542-3552.
[27]
Norton TT, Rada JA. Reduced extracellular matrix in mammalian sclera with induced myopia[J]. Vision Res, 1995, 35(9): 1271-1281.
[28]
Jobling AI, Nguyen M, Gentle A, et al. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression[J]. J Biol Chem, 2004, 279(18): 18121-18126.
[29]
McBrien NA. Regulation of scleral metabolism in myopia and the role of transforming growth factor-beta[J]. Exp Eye Res, 2013, 114: 128-140.
[30]
邓骏杰,何鲜桂,许讯. 高度近视巩膜厚度研究现状与进展[J]. 中华眼底病杂志2017, 33(1):87-89.
[31]
Vurgese S, Panda-Jonas S, Jonas JB. Scleral thickness in human eyes[J]. PLoS One, 2012, 7(1): e29692.
[32]
Shen L, You QS, Xu X, et al. Scleral thickness in Chinese eyes[J]. Invest Ophthalmol Vis Sci, 2015, 56(4): 2720-2727.
[33]
Norman RE, Flanagan JG, Rausch SM, et al. Dimensions of the human sclera: Thickness measurement and regional changes with axial length[J]. Exp Eye Res, 2010, 90(2): 277-284.
[34]
Cheng HM, Singh OS, Kwong KK, et al. Shape of the myopic eye as seen with high-resolution magnetic resonance imaging[J]. Optom Vis Sci, 1992, 69(9): 698-701.
[35]
Moriyama M, Ohno-Matsui K, Hayashi K, et al. Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging[J]. Ophthalmology, 2011, 118(8): 1626-1637.
[36]
Singh KD, Logan NS, Gilmartin B. Three-dimensional modeling of the human eye based on magnetic resonance imaging[J]. Invest Ophthalmol Vis Sci, 2006, 47(6): 2272-2279.
[37]
Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography[J]. Am J Ophthalmol, 2008, 146(4): 496-500.
[38]
Park HY, Shin HY, Park CK. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging[J]. Am J Ophthalmol, 2014, 157(3): 550-557.
[39]
Hayashi M, Ito Y, Takahashi A, et al. Scleral thickness in highly myopic eyes measured by enhanced depth imaging optical coherence tomography[J]. Eye (Lond), 2013, 27(3): 410-417.
[40]
Ellabban AA, Tsujikawa A, Muraoka Y, et al. Dome-shaped macular configuration: longitudinal changes in the sclera and choroid by swept-source optical coherence tomography over two years[J]. Am J Ophthalmol, 2014, 158(5): 1062-1070.
[41]
Maruko I, Iida T, Sugano Y, et al. Morphologic analysis in pathologic myopia using high-penetration optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 3834-3838.
[42]
Ohno-Matsui K, Akiba M, Modegi T, et al. Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6046-6061.
[43]
Ellabban AA, Tsujikawa A, Matsumoto A, et al. Three-dimensional tomographic features of dome-shaped macula by swept-source optical coherence tomography[J]. Am J Ophthalmol, 2013, 155(2): 320-328.
[44]
Lopilly PHY, Lee NY, Choi JA, et al. Measurement of scleral thickness using swept-source optical coherence tomography in patients with open-angle glaucoma and myopia[J]. Am J Ophthalmol, 2014, 157(4): 876-884.
[1] 黄珈瑶, 林满霞, 田文硕, 何璟怡, 赖佳明, 谢晓燕, 龙海怡. 健康成人胰腺剪切波弹性成像的可行性和测量值及其影响因素[J]. 中华医学超声杂志(电子版), 2023, 20(05): 524-529.
[2] 郭冬会, 马艳宁, 秦文, 王宪, 金作林, 高洁. 未正畸人群面部软组织随时间变化的三维初步研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 279-284.
[3] 刘翠翠, 吴亚星, 李晨晨, 张淑婷, 张静. 微型支抗钉矫治成人骨性Ⅲ类错畸形的研究进展[J]. 中华口腔医学研究杂志(电子版), 2022, 16(02): 125-129.
[4] 万顷, 邓先锐, 何婷, 郑磊, 陈虹豆, 王永. 腹腔镜与开放腹膜前疝修补手术治疗成人腹股沟疝的成本效益分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(01): 91-95.
[5] 王亮, 刘梅宝, 张涛, 赖家骏, 翁伟明, 曾德强, 李定云, 朱晓峰, 谭逸衍. 快速康复外科理念在成人腹股沟疝日间手术的应用体会[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(06): 721-724.
[6] 吴芳芳, 俞永江. 成人嵌顿/绞窄性腹股沟疝的诊疗进展[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 502-504.
[7] 刘佳铭, 孙晓容, 文健, 何晓丽, 任茂玲. 有氧运动对成人哮喘肺功能、生活质量以及哮喘控制影响的Meta分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 592-595.
[8] 林明玥, 周祁, 刘歆, 曲申, 陈开传, 吕筱, 韩雯婷, 毕燕龙. 术中光学相干断层扫描辅助玻璃体Berger腔切除术的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 199-204.
[9] 蔡紫妍, 段宣初, 杨翔. 深度学习算法在青光眼筛查与诊断中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 188-192.
[10] 宋红欣, 孙璐, 王庆强. 近视性屈光参差少年儿童眼部屈光生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 88-93.
[11] 白静怡, 黄轩, 张益权, 田颖, 陶勇. 小鼠干眼模型构建及其角膜特征检测的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 12-17.
[12] 周海英, 纪海霞, 佘海澄, 彭晓燕. 视盘黑色素细胞瘤多模态影像学特征的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 198-203.
[13] 王子杨, 杨文利. 关注屈光性白内障手术时代的精准眼球生物测量[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 193-197.
[14] 许馨月, 陈涛, 苏玉婷, 张作明. 青少年近视眼预防与控制技术研究的新进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 173-177.
[15] 李长栋, 王志宏, 蔡霞. 成人颅骨修补术后并发症及其防治策略[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 108-111.
阅读次数
全文


摘要