切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2018, Vol. 08 ›› Issue (01) : 15 -22. doi: 10.3877/cma.j.issn.2095-2007.2018.01.003

所属专题: 青少年近视防控 文献

论著

高度近视眼行准分子激光原位角膜磨镶术后长期稳定性的研究
宋耀文1, 贺瑞2,(), 马秋霞2   
  1. 1. 030002 山西医科大学第一临床医学院眼科
    2. 030002 太原,山西省眼科医院准分子激光科
  • 收稿日期:2018-03-07 出版日期:2018-02-28
  • 通信作者: 贺瑞
  • 基金资助:
    国家自然科学基金青年基金(11402161); 山西省科技攻关计划项目(20120313025-3); 山西省卫计委科技攻关项目(201201018)

Long term stability of high myopia after excimer laser in situ keratomileusis

Yaowen Song1, Rui He2,(), Qiuxia Ma2   

  1. 1. Department of Ophthalmology, the First Clinical Medical College of Shanxi Medical University, Taiyuan 030002, China
    2. Excimer Laser Department, Shanxi Eye Hospital, Taiyuan 030002, China
  • Received:2018-03-07 Published:2018-02-28
  • Corresponding author: Rui He
  • About author:
    Corresponding author: He Rui, Email:
引用本文:

宋耀文, 贺瑞, 马秋霞. 高度近视眼行准分子激光原位角膜磨镶术后长期稳定性的研究[J]. 中华眼科医学杂志(电子版), 2018, 08(01): 15-22.

Yaowen Song, Rui He, Qiuxia Ma. Long term stability of high myopia after excimer laser in situ keratomileusis[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2018, 08(01): 15-22.

目的

探讨高度近视眼准分子激光原位角膜磨镶术(LASIK)术后长期的安全性和有效性。

方法

纳入2003年8月至2011年7月在山西省眼科医院准分子激光科接受LASIK、(角膜瓣厚度+切削深度)/术前中央角膜厚度的百分比(PTA)≥40%且资料完整的高度近视眼患者112例(221只眼)的临床资料。其中,男性54例(105只眼),女性58例(116只眼);年龄18~35岁,平均年龄(25.6±5.4)岁。患者术前的等效球镜度(SE)均≥-6.00 D。术前及术后末次复查时均进行裸眼视力(UCVA)、矫正视力(CDVA)、球镜度数、散光度数、SE、中央角膜厚度(CCT)及角膜地形图等检查。分析患者术后的屈光状态、稳定性、安全性及有效性。术后还需测量患者的剩余基质床厚度(RSBT),计算PTA及术后RSBT占术前CCT的百分比(PSBT)。患者术前及末次复查的各项数据采用均数±标准差(±s)表示。术前与术后患者的视力和SE采用独立样本t检验进行比较,不同的CCT检查方法采用配对t检验进行比较。

结果

患者术前的UCVA为0.08±0.30,术后末次复查时的UCVA为0.8±0.2。两者比较,差异有统计学意义(t=29.99,P<0.05)。末次复查时的屈光检查结果显示,患者的球镜度数为(-0.87±0.97) D,散光度数为(0.40±0.41)D,SE为(-0.75±1.03)D。末次检查时的SE与术前SE比较,差异有统计学意义(t=36.33,P<0.05)。手术的安全指数为1.10,有效指数为0.90。术后患者的PTA为44%±3%。术后患者的PSBT为58%±5%。患者未出现继发性圆锥角膜。

结论

PTA≥40%但PSBT达到50%及以上时,高度近视眼患者在LASIK术后长期稳定,未发现继发性圆锥角膜。

Objective

Discussion on (the corneal flap thickness and cutting depth) for the safety and efficacy of preoperative central corneal thickness and the percentage of more than 40% patients with high myopia after LASIK long-term corneal biomechanics and operation state.

Methods

In July 2011 August 2003 to accept LASIK, PTA ≥ 40% and the complete data of 112 cases with high myopia after excimer laser, Eye Hospital of Shanxi province (221 eyes) of clinical data. Among them, there were 54 males (105 eyes), 58 women (116 eyes), 18~35 years old, and the average age (25.6±5.4) years. Preoperative spherical equivalent (SE) were more than -6.00 D. Preoperative and postoperative final review were performed to examine the patients′ naked eye (UCVA), corrected visual acuity (CDVA), spherical degree, astigmatism, SE, central corneal thickness (CCT) and corneal topography. The diopter status, stability, safety and effectiveness of postoperative patients were analyzed. Residual matrix bed thickness (RSBT) was also required after operation to calculate the percentage of PTA and the percentage of RSBT before the operation (PSBT). The data of the patients before and after the final reexamination were expressed by mean standard deviation(±s). The visual acuity of the patients before and after the operation was examined by independent sample t-test, and the patients were paired with the t-test before and after the operation of the CCT.

Results

The preoperative UCVA was 0.01 to 0.20, and the average UCVA was 0.08±0.30. The UCVA at the last postoperative reexamination was 0.8±0.2. There was a significant difference between the two groups (t=29.99, P < 0.05). The refraction results at the last review showed that the spherical mirror degree of the patients was (-0.87±0.97) D, the astigmatism was(0.40 ± 0.41) D, the SE was(-0.75±1.03). The difference between the SE and the preoperative SE was statistically significant (t=36.33, P < 0.05). The safety index of the operation was 1.10 and the effective index was 0.90. The PTA of the patients after operation was 40% ~ 55%, and the average PTA was 44%±3%. The PSBT of the patients after operation was 51% ~ 85%, and the average PSBT was 58%±5%. There was no secondary keratoconus in the patient.

Conclusion

In this cohort with the PTA≥40% and PSBT reached 50% and above, long-term stability in patients with high myopia after LASIK, no secondary keratoconus found.

图1 LASIK患者术前CDVA、术后UCVA及术后CDVA的示意图
图2 LASIK术后患者的SE在不同范围的分布图
图3 LASIK患者术后CDVA的变化示意图
图4 术前CDVA、术后UCVA的累积百分比示意图
图5 LASIK术后患眼的中央角膜厚度在不同范围内的分布图(采用眼前节OCT测量)
图6 LASIK术后患眼的剩余基质床厚度在不同范围内的分布图
图7 LASIK术后患眼的(角膜瓣厚度+切削深度)/术前中央角膜厚度百分比在不同范围内的分布
图8 LASIK术后患眼的剩余基质床厚度/术前中央角膜厚度百分比在不同范围的分布图
图9 术前屈光度为-15.00 D的术眼在术后第119个月时的角膜地形图及眼前节OCT图像 未发现类似圆锥角膜的形态改变
图10 RSBT=240 μm的术眼在术后104个月时的角膜地形图及眼前节OCT图像 未发现类似圆锥角膜的形态改变
[1]
Aizawa D, Shimizu K, Komatsu M, et al. Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up[J]. J Cataract Refract Surg, 2003, 29(8):1507-1513.
[2]
Gailitis RP. Comparison of LASIK outcomes with the Alcon LADARVision4000 and the VISX STAR S2 excimer lasers using optimized nomograms[J]. J Refract Surg, 2005, 21(6):683-690.
[3]
Carones F, Vigo L, Scandola E. Wavefront-guided treatment of abnormal eyes using the LADARVision platform[J]. J Refract Surg, 2003, 19(6):703-708.
[4]
Nuijts RM, Nabar VA, Hament WJ, et al. Wavefront-guided versus standard laser in situ keratomileusis to correct low to moderate myopia[J].J Cataract Refract Surg, 2002, 28(11):1907-1913.
[5]
Santhiago MR, Smadja D, Gomes BF, et al. Association Between the Percent Tissue Altered and Post-Laser In Situ Keratomileusis Ectasia in Eyes With Normal Preoperative Topography[J]. Am J Ophthalmol, 2014, 158(1):87-95.
[6]
Kocak-Altintas AG, Kocak-Midillioglu I, Akarsu AN, et al. BIGH3 gene analysis in the differential diagnosis of corneal dystrophies[J]. Cornea, 2001, 20(1):64-68.
[7]
Huang T, Hu Y, Gui M, et al.Comparison of refractive outcomes in three corneal transplantation techniques for keratoconus[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(11):1947-1953.
[8]
Spadea L, Cantera E, Cortes M, et al. Corneal ectasia after myopic laser in situ keratomileusis: a long-term study[J]. Clin Ophthalmol, 2012, 6(1):1801-1813.
[9]
Tham VM, Maloney RK. Microkeratome complications of laser in situ keratomileusis[J]. Ophthalmology, 2000, 107(5):920-924.
[10]
Djodeyre MR, Beltran J, Ortega-Usobiaga J, et al. Long-term evaluation of eyes with central corneal thickness<400 μm following laser in situ keratomileusis[J]. Clin Ophthalmol, 2016, 10(1):535-540.
[11]
Melki SA, Azar DT. LASIK complications: etiology, management, and prevention[J]. Surv Ophthalmol, 2001, 46(2):95-116.
[12]
Comaish IF, Lawless MA. Progressive post-LASIK keratectasia: biomechanical instability or chronic disease process?[J]. J Cataract Refract Surg, 2002, 28(12):2206-2213.
[13]
Binder PS, Lindstrom RL, Stulting RD, et al. Keratoconus and corneal ectasia after LASIK[J]. J Cataract Refract Surg, 2005, 31(11):2035-2038.
[14]
Randleman JB, Woodward M, Lynn MJ, et al. Risk assessment for ectasia after corneal refractive surgery[J]. Ophthalmology 2008, 115(1):37-50.
[15]
Twa MD, Nichols JJ, Joslin CE, et al. Characteristics of corneal ectasia after LASIK for myopia[J]. Cornea, 2004, 23(5):447-457.
[16]
Randleman JB, Russell B, Ward MA, et al. Risk factors and prognosis for corneal ectasia after LASIK[J]. Ophthalmology, 2003, 110(2):267-275.
[17]
Alió JL, Muftuoglu O, Ortiz D, et al. Ten-year follow-up of photorefractive keratectomy for myopia of more than -6 diopters[J].Am J Ophthalmol, 2008, 145(1):37-45.
[18]
Randleman JB, Dawson DG, Grossniklaus HE. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery[J]. J Refract Surg, 2008, 24(1):85-89.
[19]
贺瑞,周迎霞,陈维毅,等. 不同角膜切削深度的准分子激光原位角膜磨镶术对兔角膜的影响[J]. 中华眼视光学与视觉科学杂志,2010, 12(2):142-145.
[20]
Alió JL, Soria F, Abbouda A, et al. Laser in situ keratomileusis for -6.00 to -18.00 diopters of myopia and up to -5.00 diopters of astigmatism:15-year follow-up[J]. J Cataract Refract Surg, 2015, 41(1):33-40.
[21]
Khaja WA, Grover S, Kelmenson AT, et al. Comparison of central corneal thickness: ultrasound pachymetry versus slit-lamp optical coherence tomography, specular microscopy, and Orbscan[J]. Clin Ophthalmol, 2015, 9(default):1065-1070.
[22]
Kuerten D, Plange N, Koch EC, et al. Central corneal thickness determination in corneal edema using ultrasound pachymetry, a Scheimpflug camera, and anterior segment OCT[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(7):1105-1109.
[23]
Wang Z, Chen J, Yang B. Posterior corneal surface topographic changes after laser in situ keratomileusis are related to residual corneal bed thickness[J]. Ophthalmology, 1999, 106(2):406-410.
[24]
Nakagawa T, Maeda N, Kosaki R, et al. Higher-order aberrations due to the posterior corneal surface in patients with keratoconus[J]. Invest Ophthalmol Vis Sci, 2009, 50(6):2660-2665.
[25]
王雁,李华. 关注临床研究,积极稳妥推广SMILE手术[J]. 中华眼视光学与视觉科学杂志,2016, 3(18):129-132.
[26]
EI-Naggar MT. Bilateral ectasia after femtosecond laser-assisted small-incision lenticule extraction[J]. J Cataract Refract Surg, 2015, 41(4):884-888.
[27]
Mattila JS, Holopainen JM. Bilateral ectasia after femtosecond laser-assisted small incision lenticule extraction (SMILE)[J]. J Refract Surg, 2016, 32(7):497-500.
[28]
Fintelmann RE, Naseri A. Prophylaxis of postoperative endophthalmitis following cataract surgery: current status and future directions[J]. Drugs, 2010, 70(11):1395-1409.
[29]
Wejde G, Montan P, Lundström M, et al. Endophthalmitis following cataract surgery in Sweden: national prospective survey 1999-2001[J]. Acta Ophthalmologica, 2005, 83(1):7-10.
[30]
García-Sáenz MC, Arias-Puente A, Rodríguez-Caravaca G, et al. Effectiveness of intracameral cefuroxime in preventing endophthalmitis after cataract surgery Ten-year comparative study[J]. J Cataract Refract Surg, 2010, 36(2):203-207.
[31]
Kwok E, Patel B, Backhouse S, et al. Peripheral refraction in high myopia with spherical soft contact lenses[J]. Optom Vis Sci, 2012, 89(3):263-270.
[32]
Backhouse S, Fox S, Ibrahim B, et al. Peripheral refraction in myopia corrected with spectacles versus contact lenses[J]. Ophthalmic and Physiological Optics, 2012, 32(4):294-303.
[33]
Kang P, Fan Y, Oh K, et al. Effect of single vision soft contact lenses on peripheral refraction[J]. Optom Vis Sci, 2012, 89(7):1014-1021.
[34]
Kollbaum PS, Jansen ME, Tan J, et al. Vision performance with a contact lens designed to slow myopia progression[J]. Optom Vis Sci, 2013, 90(3):205-214.
[35]
Aller TA. Clinical management of progressive myopia[J]. Eye, 2014, 28(2):147-153.
[36]
Chua WH, Balakrishnan V, Chan YH, et al. Atropine for the treatment of childhood myopia[J]. Ophthalmology, 2012, 119(2):347-354.
[37]
Gwiazda J, Hyman L, Hussein M, et al. A Randomized Clinical Trial of Progressive Addition Lenses versus Single Vision Lenses on the Progression of Myopia in Children[J]. Invest Ophthalmol Vis Sci, 2003, 44(4):1492-1500.
[38]
Berntsen DA, Mutti DO, Zadnik K. Study of Theories about Myopia Progression (STAMP) design and baseline data[J]. Optom Vis Sci, 2010, 87(11):823-832.
[39]
Hung GK, Ciuffreda KJ. Quantitative analysis of the effect of near lens addition on accommodation and myopigenesis[J]. Curr Eye Res, 2009, 20(4):293-312.
[40]
Souza MB, Alves MR, de Medeiros FW, et al. Contact lens-associated ocular anterior segment diseases[J]. Arq Bras De Oftalmol, 2008, 71(6):14-18.
[41]
Cai J, Zhu L, Zha Y, et al. TGFBI Gene Mutation Analysis in Chinese Families with Corneal Dystrophies[J]. Genetic Test Mol Biomarkers, 2016, 20(7):388-392.
[42]
Skonier J, Neubauer M, Madisen L, et al. cDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta[J]. DNA Cell Biol, 1992, 11(7):511-522.
[43]
Escribano J, Hernando N, Ghosh S, et al. cDNA from human ocular ciliary epithelium homologous to beta ig-h3 is preferentially expressed as an extracellular protein in the corneal epithelium[J]. J Cell Physiol, 1994, 160(3):511-521.
[44]
Munier FL, Korvatska E, DjemaÏ A, et al. Kerato-epithelin mutations in four 5q31-linked corneal dystrophies[J]. Nature Genetics, 1997, 15(3):247-251.
[1] 张宁宁, 慕璟玉, 马晓玲, 李小龙, 王雁, 赵勇. 儿童青少年高度近视眼眼底特征的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 252-256.
[2] 姚沁楠, 万修华. 有晶状体眼后房型人工晶状体植入术与角膜屈光手术治疗高度近视眼有效性、安全性及可预测性的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 346-352.
[3] 何海龙, 刘振宇, 周春媛, 张立平, 王进达, 万修华. 飞秒激光小切口角膜基质透镜切除术与有晶状体眼后房型人工晶状体植入术矫正高度近视眼疗效的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 22-28.
[4] 赵鹏飞, 柳静, 徐雯, 胡雅斌, 翟长斌, 魏文斌. 术前应用人工泪液对FS-LASIK治疗高度近视眼术后干眼自觉症状和泪膜稳定性影响的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(06): 326-332.
[5] 吉祥, 张丁丁, 毛馨遥, 周仕萍, 刘慧. Wang-Koch优化眼轴SRK/T公式预测不同眼轴长度下高度近视眼合并白内障术后屈光度准确性的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(05): 281-287.
[6] 杨宇, 姜惠, 范玮. 高度近视眼眼底血流动力学的研究进展[J]. 中华眼科医学杂志(电子版), 2020, 10(03): 183-187.
[7] 牛红蕾, 张东昌, 杨璐. 多模式眼底影像技术在高度近视眼检查中的应用进展[J]. 中华眼科医学杂志(电子版), 2020, 10(02): 123-128.
[8] 付庆东, 杨寅寅, 俞萍萍, 徐东, 孔祥筠, 刘继丽, 王露雯. Lenstar LS900光学生物测量与浸润式B型超声引导下的A型超声分段式生物测量法在高度近视眼眼轴测量中的一致性研究[J]. 中华眼科医学杂志(电子版), 2019, 09(06): 372-377.
[9] 蒋政, 王华, 罗栋强. 有晶状体眼后房型人工晶状体植入术矫正高度近视眼术后视觉质量的临床研究[J]. 中华眼科医学杂志(电子版), 2019, 09(05): 305-311.
[10] 李梦媛, 汤云霞, 张静琳, 侯金佟, 陈倩茵, 马红婕, 吴德正. 成年超高度近视眼患者黄斑区巩膜厚度及其相关影响因素[J]. 中华眼科医学杂志(电子版), 2019, 09(02): 77-82.
[11] 戴荣平, 尹心恺, 曲艺, 龙琴. 重视高度近视眼黄斑裂孔性视网膜脱离的手术治疗[J]. 中华眼科医学杂志(电子版), 2018, 08(03): 97-102.
[12] 周迎霞, 王芳芳. 飞秒激光辅助准分子激光原位角膜磨镶术治疗超高度近视眼的疗效观察[J]. 中华眼科医学杂志(电子版), 2017, 07(03): 121-127.
[13] 周迎霞, 贺瑞, 王芳芳. 两种角膜屈光手术方式治疗高度近视眼的疗效观察[J]. 中华眼科医学杂志(电子版), 2017, 07(02): 66-71.
阅读次数
全文


摘要