切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2020, Vol. 10 ›› Issue (05) : 281 -287. doi: 10.3877/cma.j.issn.2095-2007.2020.05.005

所属专题: 青少年近视防控

论著

Wang-Koch优化眼轴SRK/T公式预测不同眼轴长度下高度近视眼合并白内障术后屈光度准确性的临床研究
吉祥1, 张丁丁2, 毛馨遥1, 周仕萍1, 刘慧3,()   
  1. 1. 610041 成都爱尔眼科医院白内障青光眼科
    2. 400020 重庆爱尔眼科医院白内障科
    3. 610072 成都,四川省人民医院人类疾病基因四川省重点实验室
  • 收稿日期:2020-07-01 出版日期:2020-10-28
  • 通信作者: 刘慧
  • 基金资助:
    国家自然科学基金项目(81271049)

The prediction accuracy of modified Wang-Koch SRK/T formulas for postoperative refractive power in cataract patients with axial high myopia

Xiang Ji1, Dingding Zhang2, Xinyao Mao1, Shiping Zhou1, Hui Liu3,()   

  1. 1. Department of Glaucomatous Cataract, Chengdu AIER EYE Hospital, Chengdu 610041, China
    2. Sichuan Key Laboratory of Human Disease Gene, Sichuan Provincial People′s Hospital, Chengdu 610072, China
    3. Department of Cataract, Chongqing AIER EYE Hospital, Chongqing 400020, China
  • Received:2020-07-01 Published:2020-10-28
  • Corresponding author: Hui Liu
引用本文:

吉祥, 张丁丁, 毛馨遥, 周仕萍, 刘慧. Wang-Koch优化眼轴SRK/T公式预测不同眼轴长度下高度近视眼合并白内障术后屈光度准确性的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(05): 281-287.

Xiang Ji, Dingding Zhang, Xinyao Mao, Shiping Zhou, Hui Liu. The prediction accuracy of modified Wang-Koch SRK/T formulas for postoperative refractive power in cataract patients with axial high myopia[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2020, 10(05): 281-287.

目的

初步探讨应用Wang-Koch优化眼轴SRK/T公式预测不同眼轴长度下高度近视眼合并白内障患者术后屈光度的准确性。

方法

收集2019年1月至2019年12月于成都爱尔眼科医院行白内障超声乳化联合人工晶状体植入术的59例(63只眼)高度近视眼合并白内障患者。其中,男性30例(33只眼),女性29例(30只眼);年龄44~73岁,平均年龄(59.6±8.8)岁。采用IOL Master 700测量患者术前的角膜曲率、眼轴、前房深度及晶状体厚度。根据患者眼轴长度的大小分为A组、B组及C组。A组为27 mm≤眼轴<28.00 mm,B组为28.00 mm≤眼轴<30.00 mm,C组为眼轴≥30.00 mm。个性化选取适宜的预留屈光度,包括SRK/T、Wang-Koch优化眼轴SRK/T和Barrett Universal Ⅱ三种公式的预留屈光度。术后1个月随访,测量患者实际的屈光度,计算三种公式预留屈光度与术后实际屈光度的差值及平均绝对屈光误差,比较不同公式及分组下人工晶状体屈光度预测的准确性。采用Shapiro-Wilk正态性检验分析屈光度误差;当符合正态分布时以均数±标准差表示,采用单因素方差分析进行组间比较;反之,采用中位数和上下四分位数表示,采用非参数检验进行组间比较。采用眼数和百分比描述不同屈光阈所占的百分比,采用卡方检验进行组间比较。采用Spearman相关系数和线性回归分析评估眼轴与平均绝对屈光误差间的相关性。

结果

59例(63只眼)患者中,SRK/T、Wang-Koch优化眼轴SRK/T及Barrett Universal Ⅱ三种公式的平均绝对屈光误差分别为0.57(0.32,0.98)D、0.32(0.17,0.61)D及0.34(0.17,0.66)D。后两者的平均绝对屈光误差明显小于前者。经单因素方差分析,两者比较的差异有统计学意义(Z=-3.77,-4.28;P<0.05)。术后屈光误差在±0.50 D和±1.00 D范围内所占百分比中,Wang-Koch优化眼轴SRK/T公式最高,分别为69.8%和98.4%。A组与B组内三种公式平均绝对屈光误差的比较,差异无统计学意义(Z=-0.28,-0.97;P>0.05)。C组SRK/T公式预测的平均绝对屈光误差最大。经单因素方差分析,SRK/T、Wang-Koch优化眼轴SRK/T及Barrett Universal Ⅱ三种公式预测屈光度的比较,差异有统计学意义(Z=-3.22,-3.29;P<0.05)。使用SRK/T公式时,平均绝对屈光误差与眼轴相关。经Spearman相关性分析,其差异有统计学意义(r=0.521,P<0.05)。使用Wang-Koch优化眼轴SRK/T公式及Barrett Universal Ⅱ公式时,平均绝对屈光误差与眼轴不相关。经Spearman相关性分析,其差异无统计学意义(r=0.249,0.228;P>0.05)。SRK/T的平均绝对屈光误差与眼轴的一元回归方程为Y=-3.606+0.146X。经Spearman相关性分析,其差异无统计学意义(r=0.249,P>0.05)。

结论

对高度近视眼患者进行人工晶状体屈光度计算时,SRK/T、Wang-Koch优化眼轴SRK/T和Barrett Universal Ⅱ公式都是相对准确的。但当患者眼轴≥30 mm时,Wang-Koch优化眼轴SRK/T公式和Barrett Universal Ⅱ公式的预测屈光误差更小。

Objective

The aim of this study was to evaluate the prediction accuracy of modified Wang-Koch SRK/T formula in high myopia eye with different axial lengths (AL) after cataract surgery.

Methods

The study comprised 63 eyes of 59 cataract patients with high myopia in Chengdu AIER EYE Hospital between January 2019 to December 2019. Among of them, there were 30 males (33 eyes), 29 females (30 eyes). They were aged 44 to 73 years-old with the mean age of (59.6±8.8) years-old. IOL Master 700 was used to measure the keratometry, AL, anterior chamber depth and lens thickness. An intraocular lens (IOL) with appropriate residual refractive power was individually selected for each eye, and the postoperative residual refractive powers of the SRK/T, Wang-Koch modified SRK/T and Barrett Universal Ⅱ formulas were obtained. According to ALs, patients were dived into three groups: patients with 27.00≤AL<28.00 mm (group A); 28.00≤AL <30.00 mm (group B); and AL≥30.00 mm (group C). The refractive powers of the patients at 1 month after surgery were measured. Then the difference between the preoperative residual refractive power and postoperative refractive power, which was named the mean refractive error, the absolute value of the difference, which was named the mean absolute refractive error (MAE), were calculated. The prediction accuracy was compared between 3 formulas in different groups. Data distribution for normality of the refractive errors was checked using the Shapiro-Wilk test. The quantitative data of normal distributions were expressed by the mean±standard deviation, and the measurement data were tested by analysis of variance. The quantitative data of non-normal distributions were expressed by the median and percentile, and the measurement data were tested by non-parametric tests. The description of the ratio of eyes within different prediction errors were expressed as the number of eyes and percentages, which were compared by chi-square test. Spearman′s rank and line regression was used to test the correlation between AL and MAE.

Results

The MAE of the SRK/T, Wang-Koch SRK/T formula and Barrett Universal Ⅱ formulas were 0.57(0.32, 0.98) D, 0.32(0.17, 0.61) D and 0.34(0.17, 0.66) D, respectively. The MAE in the modified Wang-Koch SRK/T and Barrett Universal Ⅱ formulas were significantly lower than the SRK/T formula. After the analysis of variance, there was significant difference between them (Z=-3.77, -4.28; P<0.05). For the percentage of eyes within ±0.50 D and ±1.00 D of the prediction error, the modified Wang-Koch SRK/T formula had the highest value, which was 69.8% and 98.4%, respectively. No significant difference was found when compared the MAE between three formulas in group A and group B (Z=-0.28, -0.97; P>0.05). In group C, the MAE was significantly higher in the SRK/T formula than in the modified Wang-Koch SRK/T and Barrett Universal Ⅱ formulas. After the analysis of variance, there was significant difference between them(Z=-3.22, -3.29; P<0.05). When using SRK/T formula, MAE and AL had correlation. After correlation analysis, there was significant difference between them (r=0.521, P<0.05). When using Wang-Koch SRK/T formula and Barrett Universal Ⅱ formulas , MAE and AL had no correlation. After correlation analysis, there was non-significant difference between them (r=0.249, 0.228; P>0.05). The regression equation with one unknown of MAE and AL was Y=-3.606+ 0.146X. After Spearman analysis, there was non-significant difference between them (r=0.249, P>0.05).

Conclusions

Intraocular lens power alculation in eyes with high myopia were accurate in all 3 formulas. In patients with AL of 30.00 mm or more, the modified Wang-Koch SRK/T and Wang-Koch SRK/T and Barrett Universal Ⅱ formulas were better than the SRK/T formula.

表1 不同分组高度近视眼的基本情况[M(P25,P75)]
表2 三种计算公式在患者平均屈光度误差、绝对屈光度误差及不同屈光阈所占百分比的比较[M(P25,P75)]
表3 三种人工晶状体计算公式在各组之间平均绝对屈光误差的比较[M(P25,P75)]
[1]
Huang Q, Huang Y, Luo Q, et al. Ocular biometric characteristics of cataract patients in western China[J]. BMC Ophthalmol, 2018, 18(1): 99.
[2]
Cui Y, Meng QH, Zeng J, et al. Biometry and corneal astigmatism in cataract surgery candidates from southern China[J]. J Cataract Refract Surg, 2014, 40: 1661-1669.
[3]
MacLaren RE, Sagoo MS, Restori M, et al. Biometry accuracy using zero-and negative-powered intraocular lenses[J]. J Cataract Refract Surg, 2005, 31(2): 280-290.
[4]
Kempen JH, Mitchell P, et al. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia[J]. Arch Ophthalmol, 2004, 122: 495-505.
[5]
Vital S, Sperduto RD, Ferris FL. Increased prevalence of myopia in the United States between 1971—1972 and 1999—2004[J]. Arch Ophthalmol, 2009, 127: 1632-1639.
[6]
Sun J, Meng Q, Guo H, et al. High prevalence of myopia and high myopia in 5060 Chinese university students in shanghai[J]. Invest Ophthalmol Vis Sci, 2012, 53: 7504-7509.
[7]
Lee JH, Jee D, Kwon JW, et al. Prevalence and risk factors for myopia in a rural Korean population[J]. Invest Ophthalmol Vis Sci, 2013, 54: 5466-5471.
[8]
Pan CW, Zheng YF, Anuar AR, et al. Prevalence of refractive errors in a multiethnic Asian population;the Singanpore epidemiology of eye disease study[J]. Invest Ophthalmol Vis Sci, 2013, 54: 2590-2598.
[9]
Brien A, Holden T, Fricke R, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2017, 124(3):24-25.
[10]
Zhu X, Zhang K, He W, et al. Proinflammatory status in the aqueous humor of high myopic cataract eyes[J]. Exp Eye Res, 2016, 142: 13-18.
[11]
Younan C, Mitchell P, Cumming RG, et al. Myopia and incident cataract and cataract surgery: The Blue Mountains Eye Study[J]. Invest Ophthalmol Vis Sci, 2002, 43(12): 3625-3632.
[12]
Zuberbuhler B, Seyedian M, Tuft S. Phacoemulsification in eyes with extreme axial myopia[J]. J Cataract Refract Surg, 2009, 35(2): 335-340.
[13]
Chong EW, Mehta JS. High myopia and cataract surgery[J]. Curr Opin Ophthalmol, 2016, 27(1): 45-50.
[14]
Cetinkaya S, Acir NO, Cetinkaya YF, et al. Phacoemulsification in eyes with cataract and high myopia[J]. Arq Bras Oftalmol, 2015, 78(5): 286-289.
[15]
Ma S, Zheng D, Lin L, et al. Comparison of visual quality after implantation of big bag and akreos adapt intraocular lenses in patients with high myopia[J]. Eye Sci, 2015, 30(1): 18-22.
[16]
Martinez-Enriquez E, Pérez-Merino P, Durán-Poveda S, et al. Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas[J]. Sci Rep, 2018, 8(1): 9829.
[17]
Melles RB, Holladay JT, Chang WJ. Accuracy of intraocular lens calculation formullas[J]. Ophthalmology, 2018, 125(2): 169-1253.
[18]
方薇,张健,刘大川,等. 长眼轴老年白内障患者人工晶状体预测公式的应用分析[J]. 国际眼科杂志201717(7):1249-1253.
[19]
Zaldivar R, Shultz MC, Davidorf JM, et al. Intraocular lens power calculations in patients with extreme myopia[J]. J Cataract Refract Surg, 2000, 26(5): 668-674.
[20]
马秀艳,周建. 高度近视眼人工晶状体屈光度计算公式的准确性比价[J]. 眼科新进展201636(9): 863-867.
[21]
Olsen T, Hoffmann PC. Constant: new concept for ray tracing-assis-ted intraocular lens power calculation [J]. J Cataract Refract Surg, 2014, 40(5): 764-773.
[22]
Ladas JG, Siddiqui AA, Devgan U, et al. A 3-D "super super" combining modem intraocular lens formulas to generate a "super formula" and maximize accuracy[J]. JAMA Ophthalmol, 2015, 133(12): 1431-1436.
[23]
竺向佳,何雯雯,杜钰,等. 三种人工晶状体计算公式对高度近视眼并发性白内障的预测误差比较[J].中华眼科杂志201753(4):260-265.
[24]
Wang L, Shirayama M, Ma XJ, et al.Optimizing intraocular lens power calculations in eyes with axial lengths above 25.00 mm[J]. J Cataract Refract Surg, 2011, 37: 2018-2027.
[25]
Wang L, Koch DD. Modified axial length adjustment formulas in long eyes[J]. J Cataract Refract Surg, 2018, 44: 1396-1397.
[26]
Melles RB, Holladay JT, Chang WJ. Accuracy of intraocular lens calculation formulas[J]. Ophthalmology, 2018, 125: 169-178.
[27]
Gokce SE, Zeiter JH, Weikert MP, et al. Intraocular lens power calculations in short eyes using 7 formulas[J]. J Cataract Refract Surg, 2017, 43(7); 829-297.
[28]
Abulafia A, Barrett GD, Rotenberg M, et al. Intraocular lens power calculation for eyes with an axial length greater than 26.00 mm: comparison of formulas and methods[J]. J Cataract Refract Surg, 2015, 41(3): 548-556.
[29]
顾雪芬,荣翱. 伴高度近视的白内障人工晶状体屈光度计算四种公式准确性比较[J]. 中华眼外伤职业眼病杂志201941(7):492-496.
[30]
Hoffer KJ, Savini G. IOL power calculation in short and long eyes[J]. Asia Pac J Ophthalmol (Phila), 2017, 6(4): 330-331.
[31]
Rong X, He W, Zhu Q, et al. Intraocular lens power calculation in eyes with extreme myopia: Comparison of Barrett Universal Ⅱ,Haigis, and Olsen formulas[J]. J Cataract Refract Surg, 2019, 45(6): 732-737.
[32]
Zhou D, Sun Z, Deng G. Accuracy of the refractive prediction determined by intraocular lens power calculation formulas in high myopia[J]. Indian J Ophthalmol, 2019, 67: 484-489.
[33]
Chen C, Xu X, Miao Y, et al. Accuracy of intraocular lens power formulas invlving 148 eyes with long axial lengths: A retrospective chart-review study[J]. J Ophthalmol, 2015: 976847.
[34]
Kane JX, Van heerden A, Atik A, et al. Accuracy of 3 new mehtods for intraocular lens power selection[J]. J Cataract Refract Surg, 2017, 43(3): 333-339.
[35]
Hill DC, Sudhakar S, Hill CS, et al. Intraoperative aberrometry versus preoperative biometry for intraocular lens power selection in axial myopia[J]. J Cataract Refract Surg, 2017, 43(4): 505-510.
[36]
Roberts TV, Hodge C, Sutton G, et al. Comparsion of Hill-radial basis function, Barrentt Universal and current third generation formulas for the calculation of intraocular lens power during cataract surgery[J]. Clin Experiment Ophthalmol, 2018, 46(3): 240-246.
[37]
Ladas JG, Siddiqui AA, Devgan U, et al. A 3-D "super surface" combining modern intraocular lens formulas to generate a "super formula" and maximize accuracy[J]. JAMA Ophthalnol, 2015, 133(12): 1431-1436.
[38]
Huelle JO, Katz T, Druchkiv V, et al. Fist clinical results on the feasibility, quality and reproducibility of aberrometry-based intraoperative refraction during cataract surgery[J]. Br J Ophthalmol, 2014, 98(11): 1481-1491.
[39]
Huelle JO, Druchkiv V, Habib NE, et al. Intraoperative aberrometry-based aphakia refraction in patients with cataract;status and options[J]. Br J Ophthalmol, 2017, 101(2): 97-102.
[40]
Stringham J, Pettey J, Olson RJ. Evaluation of variables affecting intraoperative aberrometry[J]. J Cataract Refract Surg, 2012, 38(3): 470-474.
[41]
Masket S, Fram NR, Holladay JT. Influence of ophthalmic viscosurgical devices on intraoperative aberrometry[J]. J Cataract Refract Surg, 2016, 42(7): 990-994.
[1] 马丹, 李雅楠, 张丽, 苗金红, 李学民, 胡晋平. 不同人工晶状体装载方法对术中襻与光学部黏附影响的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 24-29.
[2] 万修华. 角膜移植术后白内障吸除联合张力环及后房型人工晶状体植入术[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 0-.
[3] 万修华. 白内障标准化手术系列视频(5级全白核)[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 0-.
[4] 张宁宁, 慕璟玉, 马晓玲, 李小龙, 王雁, 赵勇. 儿童青少年高度近视眼眼底特征的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 252-256.
[5] 王晓宇, 李亚新, 刘一昀, 耿嘉懿, 秦锐, 李炎城, 敖明昕, 刘德海, 齐虹. 不同设计多焦点人工晶状体植入后视觉质量差异的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 210-215.
[6] 万修华. 白内障标准化手术系列视频(4级核)[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 0-.
[7] 熊天旭, 范玮, 万修华. 白内障患者老视矫正的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 52-56.
[8] 万修华. 白内障标准化手术系列视频(2级核)(视频)[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 0-0.
[9] 姚沁楠, 万修华. 有晶状体眼后房型人工晶状体植入术与角膜屈光手术治疗高度近视眼有效性、安全性及可预测性的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 346-352.
[10] 王珏雪, 王开杰, 万修华. 人工晶状体相关并发症的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(05): 311-315.
[11] 李猛, 王进达, 张景尚, 王开杰, 毛迎燕, 陈淑莹, 姚沁楠, 万修华. 六种人工晶状体计算公式计算先天性白内障患者人工晶状体度数准确性的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(04): 211-216.
[12] 刘兆川, 宋旭东. 重视景深延长型人工晶状体在屈光性白内障手术中的应用[J]. 中华眼科医学杂志(电子版), 2021, 11(04): 193-197.
[13] 陇悦, 范玮. 白内障手术中复曲面人工晶状体拓展运用的临床现状[J]. 中华眼科医学杂志(电子版), 2021, 11(02): 109-113.
[14] 姜雅琴, 张敏, 马健利, 黄旭东, 宋丽平. 飞秒激光辅助超声乳化术后不同人工晶状体有效位置和轴向位移量变化的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(02): 76-81.
[15] 何海龙, 刘振宇, 周春媛, 张立平, 王进达, 万修华. 飞秒激光小切口角膜基质透镜切除术与有晶状体眼后房型人工晶状体植入术矫正高度近视眼疗效的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 22-28.
阅读次数
全文


摘要