切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2020, Vol. 10 ›› Issue (03) : 183 -187. doi: 10.3877/cma.j.issn.2095-2007.2020.03.010

所属专题: 青少年近视防控

综述

高度近视眼眼底血流动力学的研究进展
杨宇1, 姜惠2, 范玮2,()   
  1. 1. 610041 成都,四川大学华西临床医学院2018级硕士研究生
    2. 610041 成都,四川大学华西医院眼科
  • 收稿日期:2020-05-09 出版日期:2020-06-28
  • 通信作者: 范玮
  • 基金资助:
    国家自然科学基金项目(81670869)

Advances on research off undus hemodynamics in high myopia

Yu Yang1, Hui Jiang2, Wei Fan2,()   

  1. 1. Master′s degree 2018, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
    2. Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
  • Received:2020-05-09 Published:2020-06-28
  • Corresponding author: Wei Fan
引用本文:

杨宇, 姜惠, 范玮. 高度近视眼眼底血流动力学的研究进展[J]. 中华眼科医学杂志(电子版), 2020, 10(03): 183-187.

Yu Yang, Hui Jiang, Wei Fan. Advances on research off undus hemodynamics in high myopia[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2020, 10(03): 183-187.

高度近视眼是导致低视力与致盲的主要眼部疾病。患者可出现后巩膜葡萄肿、脉络膜及视网膜萎缩等特征性病变,并伴有血管系统结构完整性的损伤和眼部血流动力学的改变。本文中笔者就高度近视眼眼底血流动力学的研究进展进行综述,旨在为近视眼潜在病理生理学特征的探索及高度近视眼眼底病变的理解提供参考。

High myopia is one of the main causes of low vision and blindness. There may be characteristic lesions such as posterior scleral staphyloma, choroid and retinalatrophy, accompanied by damage to the vascular system, resulting in changes in ocular hemodynamics. This article reviews the progress of fundus hemodynamics in patients with high myopia which has important guiding significance for exploring the potential pathophysiological characteristics of myopia and understanding the fundus lesions of high myopia.

[1]
Morgan IG, French AN, Ashby RS, et al. The epidemics of myopia: Aetiology and prevention[J]. Prog Retin Eye Res, 2018, 62: 134-149.
[2]
Holden BA, Fricke TR, Wilson DA, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042.
[3]
李文博,胡博杰,李筱荣. 高度近视的组织学改变研究进展[J]. 天津医药201745(6):657-659.
[4]
Riordan-Eva P. Vaughan & Asbury′s General Ophthalmology[M]. The United States: McGraw-Hill Education, 2015: 4-6.
[5]
Foulds WS. Retinal metabolism and the choroidal circulation[J]. Eye, 1990, 4(2): R9-R10.
[6]
Williamson TH, Harris A. Ocular blood flow measurement[J]. The British journal of ophthalmology, 1994, 78(12): 939-945.
[7]
Luo X, Shen YM, Jiang MN, et al. Ocular Blood Flow Autoregulation Mechanisms and Methods[J]. Journal of Ophthalmology, 2015, 2015(8): 64-71.
[8]
Modrzejewska M. The regulating mechanisms of retinal and choroidalcirculation[J]. Klin Oczna, 2012, 114(2): 131-134.
[9]
Gupta N. Ocular blood flow on the move[J]. Can J Ophthalmol, 2008, 43(3): 279-280.
[10]
王振茂. 眼血流的无创性测量[J]. 医学综述201016(20):3128-3130.
[11]
Wei X, Balne PK, Meissner KE, et al. Assessment of flow dynamics in retinal and choroidal micro-circulation[J]. Survey of Ophthalmology, 2018, 63(5): 646-664.
[12]
Grudzińska E, Modrzejewska M. Modern Diagnostic Techniques for the Assessment of Ocular Blood Flow in Myopia: Current State of Knowledge[J]. Journal of Ophthalmology, 2018: 469-479.
[13]
Williamson TH, Harris A. Color Doppler ultrasound imaging of the eye and orbit[J]. Survey of Ophthalmology, 1996, 40(4): 255-267.
[14]
王志学,牟明春,孙则红,等. 彩色多普勒血流成像技术在眼内疾病中的应用[J]. 中国全科医学200912(16):1550-1553.
[15]
Silver DM, Farrell RA. Validity of pulsatile ocular blood flow measurements[J]. Survey of Ophthalmology, 1994, 38(S1): S72-S80.
[16]
王振茂,张铭志. 白内障超声乳化吸除术中高灌注压下眼内血流的变化[J]. 眼科201322(2):82-85.
[17]
樊莹,张皙. 激光多普勒血流仪的进展及其在眼科的应用[J]. 国外医学:眼科学分册200024(4),244-248.
[18]
Garhofer G, Bek T, Boehm AG, et al. Use of the retinal vessel analyzer in ocular blood flow research[J]. Acta Ophthalmologica, 2010, 88(7): 717-722.
[19]
Jayadev C, Jain N, Mohan A, et al. Clinical applications of the retinal functional imager: A brief review[J]. Indian J Ophthalmol, 2019, 67(10): 1531-1535.
[20]
Ganekal S. Retinal functional imager (RFI): non-invasive functional imaging of the retina[J]. Nepal J Ophthalmol, 2013, 5(2): 250-257.
[21]
孙姣,王艳玲,王佳琳. 光相干断层扫描血管成像在近视中的应用研究进展[J]. 中华眼底病杂志201834(1):83-86.
[22]
Borrelli E, Sadda SR, Uji A, et al. Pearls and Pitfalls of Optical Coherence Tomography Angiography Imaging: A Review[J]. Ophthalmology and Therapy, 2019, 8(2): 215-226.
[23]
Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography[J]. Progress in Retinal and Eye Research, 2018, 64: 1-55.
[24]
李惠,吴昌凡,张雷,等. 相干光层析血管成像术在高度近视眼诊治中的运用[J]. 临床眼科杂志201927(6):565-568.
[25]
Sun Y, Smith LEH. Retinal Vasculature in Development and Diseases[J]. Annu Rev Vis Sci, 2018, 4: 101-122.
[26]
Francois J. Anatomical study of the retinal circulation[J]. Br J Ophthalmol, 1952, 36(1): 37-40.
[27]
Avetisov ES, Savitskaya NF. Some features of ocular microcirculation in myopia[J]. Annals of Ophthalmology, 1977, 9(10): 1261-1264.
[28]
Shimada N, Ohno-Matsui K, Harino S, et al. Reduction of retinal blood flow in high myopia[J]. Graefes Arch Clin Exp Ophthalmol, 2004, 242(4): 284-288.
[29]
Spina CL, Corvi F, Bandello F, et al. Static characteristics and dynamic functionality of retinal vessels in longer eyes with or without pathologic myopia[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(5): 827-834.
[30]
Fan H, Chen HY, Ma HJ, et al. Reduced Macular Vascular Density in Myopic Eyes[J]. Chin Med J, 2017, 130(4): 445-451.
[31]
Ye J, Wang M, Shen M, et al. Deep Retinal Capillary Plexus Decreasing Correlated With the Outer Retinal Layer Alteration and Visual Acuity Impairment in Pathological Myopia[J]. Invest Ophthalmol Vis Sci, 2020, 61(4): 45.
[32]
Li M, Yang Y, Jiang H, et al. Retinal Microvascular Network and Microcirculation Assessments in High Myopia[J]. Am J Ophthalmol, 2017, 174: 56-67.
[33]
Ikuno Y. Overview of the complications of high myopia[J]. Retina, 2017, 37(12): 2347-2351.
[34]
Ishida T, Jonas JB, Ishii M, et al. Peripapillary arterial ring of zinn-haller in highly myopic eyes as detected by optical coherence tomography angiography[J]. Retina, 2017, 37(2): 299-304.
[35]
李涛,周晓东. 高度近视眼底形态特征的研究进展[J]. 中国眼耳鼻喉科杂志201818(6):434-437.
[36]
陈小玲,付碧波,叶波. 视乳头血流与眼科疾病[J]. 国际眼科纵览201842(1):44-47.
[37]
Benavente-Pérez A, Hosking SL, Logan NS, et al. Ocular blood flow measurements in healthy human myopic eyes[J]. Graefes Arch Clin Exp Ophthalmol, 2010, 248(11): 1587-1594.
[38]
Karczewicz D, Modrzejewska M. Assessment of blood flow in eye arteries in patients with myopia and glaucoma[J]. Klin Oczna, 2004, 106(1-2): 214-216.
[39]
Meng N, Zhang P, Huang H, et al. Color Doppler imaging analysis of retrobulbar blood flow velocities in primary open-angle glaucomatous eyes: a meta-analysis[J]. PLoS One, 2013, 8(5): e62723.
[40]
Holló G, Greve EL, van den Berg TJ, et al. Evaluation of the peripapillary circulation in healthy and glaucoma eyes with scanning laser Doppler flowmetry[J]. Int Ophthalmol, 1996, 20(1-3): 71-77.
[41]
Wang X, Kong X, Jiang C, et al. Is the peripapillary retinal perfusion related to myopia in healthy eyes? A prospective comparative study[J]. BMJ Open, 2016, 6(3): e010791.
[42]
Li Y, Miara H, Ouyang P, et al. The Comparison of Regional RNFL and Fundus Vasculature by OCTA in Chinese Myopia Population[J]. J Ophthalmol, 2018: e3490962.
[43]
Kiyota N, Kunikata H, Nakazawa T, et al. Factors associated with deep circulation in the peripapil-larychorioretinal atrophy zone in normal-tension glaucoma with myopic disc[J]. Acta Ophthalmol, 2018, 96(3): e290-e297.
[44]
Nickla DL, Wallman J. The multifunctional choroid[J]. Prog Retin Eye Res, 2010, 29(2): 144-168.
[45]
Shen L, You QS, Xu X, et al. Scleral and choroidal thickness in secondary high axial myopia[J]. Retina, 2016, 36(8): 1579-1585.
[46]
Gupta P, Thakku SG, Saw SM, et al. Characterization of Choroidal Morphologic and Vascular Features in Young Men With High Myopia Using Spectral-Domain Optical Coherence Tomography[J]. Am J Ophthalmol, 2017, 177: 27-33.
[47]
Bynke HG, Schele B. On the origin of the ocular pressure pulse[J]. Ophthalmologica, 1967, 153(1): 29-36.
[48]
Fuchs E, Duane AD. Text book of ophthalmology[M]. Philadelphia&London: JB Lippin-cott, 1991: 10-11.
[49]
Gupta P, Saw SM, Cheung CY, et al. Choroidal thickness and high myopia: a case-control study of young Chinese men in Singapore[J]. Acta Ophthalmol, 2015, 93(7): e585-e592.
[50]
Tuncer I, Karahan E, Zengin MO, et al. Choroidal thickness in relation to sex, age, refractive error, and axial length in healthy Turkish subjects[J]. Int Ophthalmol, 2015, 35(3): 403-410.
[51]
Flores-Moreno I, Lugo F, Duker JS, et al. The relationship between axial length and choroidal thickness in eyes with high myopia[J]. Am J Ophthalmol, 2013, 155(2): 314-319.
[52]
Chhablani J, Barteselli G. Clinical applications of choroidal imaging technologies[J]. Indian J Ophthalmol, 2015, 63(5): 384-390.
[53]
Akyol N, Kükner AS, Ozdemir T, et al. Choroidal and retinal blood flow changes in degenerative myopia[J]. Can J Ophthalmol, 1996, 31(3): 113-119.
[54]
Yang YS, Koh JW. Choroidal Blood Flow Change in Eyes with High Myopia[J]. Korean J Ophthalmol, 2015, 29(5): 309-314.
[55]
Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R, et al. Quantitative OCT Angiography of the Retinal Microvasculature and the Choriocapillaris in Myopic Eyes[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2063-2069.
[56]
Sayanagi K, Ikuno Y, Uematsu S, et al. Features of thechoriocapillaris in myopic maculopathy identified by optical coherence tomography angiography[J]. Br J Ophthalmol, 2017, 101(11): 1524-1529.
[57]
Shen KL, Foroozan R, Weng CY. Peripapillary intrachoroidal cavitation[J]. Clin Exp Ophthalmol, 2019, 47(9): 1200-1202.
[58]
陈秋莹,贺江南,华怡红,等. 高度近视继发视盘周围脉络膜空腔视盘血流密度的变化[J]. 国际眼科杂志201717(7):1307-1312.
[59]
Ohno-Matsui K, Ikuno Y, Lai TYY, et al. Diagnosis and treatment guideline for myopic choroidal neovascularization due to pathologic myopia[J]. Prog Retin Eye Res, 2018, 63: 92-106.
[60]
Bruyère E, Miere A, Cohen SY, et al. Neovascularization secondary to high myopia imaged by optical coherence tomography angiography[J]. Retina, 2017, 37(11): 2095-2101.
[61]
Querques L, Giuffrè C, Corvi F, et al. Optical coherence tomography angiography of myopic choroidal neovascularisation[J]. Br J Ophthalmol, 2017, 101(5): 609-615.
[1] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[4] 李晓玉, 江庆, 汤海琴, 罗静枝. 围手术期综合管理对胆总管结石并急性胆管炎患者ERCP +LC术后心肌损伤的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 57-60.
[5] 李祥魁, 薛玉荣, 丁凯, 孔劲松. ESPB、SAPB、TPVB对胸腔镜微创术血流动力学、应激反应的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 245-247.
[6] 王英, 薛意恒, 刘国勤. 肠系膜下动脉-高位结扎后降乙结肠血流通路重建机制研究方法的探索历程[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 265-271.
[7] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[8] 吴瑟菲, 苗金红, 谭舒眉, 李学民, 韩亮, 次仁琼达, 央珍, 胡晋平. 纯全氟丙烷填充联合玻璃体切割术治疗视网膜脱离的临床疗效观察[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 205-209.
[9] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[10] 崔宏宇, 杨一佺, 郭黎霞, 吕爱国, 张志宏, 张新, 杨艳萍, 申然, 连丽英, 曹志刚, 王立芳, 胡建华, 范肃洁. 改良Ahmed青光眼引流阀植入术治疗闭角期新生血管性青光眼疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 76-81.
[11] 王姗姗, 徐小汝, 史振仙, 张德杰. 丹参多酚酸联合尤瑞克林治疗急性分水岭脑梗死的疗效及对认知功能、脑血流动力学和血清LPA、ox-LDL、MMP-9水平的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 142-149.
[12] 李田利, 张照龙, 孙成建, 刘国平, 谢宜兴, 赵晓龙, 邵黎明, 郑璇, 王长鑫, 徐锐. 基于血流动力学、血脂及外周血炎症标志物的眼段动脉瘤破裂风险相关研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 78-83.
[13] 郑小迪, 甘海润, 蔡建勋, 李露婷, 庞鹏飞, 李冰. PLK3基因Y318H罕见突变促进视网膜母细胞瘤的生长[J]. 中华介入放射学电子杂志, 2023, 11(02): 146-154.
[14] 王彦旭, 何益港, 秦永林. 计算流体力学研究B型主动脉夹层中4D Flow MRI的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(02): 159-163.
[15] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
阅读次数
全文


摘要