切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (04) : 212 -217. doi: 10.3877/cma.j.issn.2095-2007.2019.04.004

论著

低浓度阿托品控制近视眼进展适宜浓度与剂型的临床研究
孙芸芸1, 李仕明1, 康梦田1, 白大勇2, 彭晓霞3, 王宁利1,()   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 北京市眼科学与视觉科学重点实验室
    2. 北京儿童医院眼科中心
    3. 北京儿童医院临床流行病与循证医学中心
  • 收稿日期:2019-06-20 出版日期:2019-08-28
  • 通信作者: 王宁利
  • 基金资助:
    国家973重点基础研究发展计划项目(2011CB504601); 国家自然科学基金重大国际合作项目(81120108007); 国家自然科学基金项目(81300797); 北京市科技新星项目(Z121107002512055); 首都卫生发展专项基金(京医研2016-5)

Appropriate atropine dose and formulation without clinical signs or symptoms

Yunyun Sun1, Shiming Li1, Mengtian Kang1, Dayong Bai2, Xiaoxia Peng3, Ningli Wang1,()   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Science Key Lab., Beijing 100730, China
    2. Eye Center, Beijing Children'sHospital, Beijing 100045, China
    3. Clinical Epidemiology and Evidence-based Medicine Center, Beijing Children's Hospital, Beijing 100045, China
  • Received:2019-06-20 Published:2019-08-28
  • Corresponding author: Ningli Wang
引用本文:

孙芸芸, 李仕明, 康梦田, 白大勇, 彭晓霞, 王宁利. 低浓度阿托品控制近视眼进展适宜浓度与剂型的临床研究[J]. 中华眼科医学杂志(电子版), 2019, 09(04): 212-217.

Yunyun Sun, Shiming Li, Mengtian Kang, Dayong Bai, Xiaoxia Peng, Ningli Wang. Appropriate atropine dose and formulation without clinical signs or symptoms[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(04): 212-217.

目的

探索阿托品用于控制近视眼进展的适宜浓度和剂型。

方法

本研究为随机对照试验。2017年2月在北京同仁医院招募了受试者10名(20只眼),双眼的等效球镜度数在-0.5 D至-5.0 D间,虹膜均为棕色。其中,男性2名、女性8名,年龄24~26岁,平均年龄(24.8±0.79)岁。依次给予受试者0.005%、0.01%、0.025%及0.05%的低浓度阿托品滴眼,应用滴眼液与凝胶的眼别随机,双侧剂型不同。检查近视力、调节幅度及瞳孔大小,并通过问卷记录受试者的主观视觉症状。采用三因素重复测量方差分析检验实验结果。

结果

0.005%、0.01%、0.025%及0.05%浓度的阿托品用药(包括滴眼液和凝胶),均引起了一定程度的瞳孔散大、调节幅度降低,且随着浓度升高程度增大。经三因素重复测量方差分析,0.005%、0.01%及0.025%的阿托品用药,对瞳孔大小、调节幅度及近视力影响的差异均无统计学意义(F=1.70,4.38,0.92;P>0.05)、(F=0.27,3.28,0.82;P>0.05)及(F=0.14,0.29,0.57;P>0.05)。凝胶对瞳孔大小的影响大于滴眼液,差异有统计学意义(F=7.51,P<0.05)。0.05%的阿托品用药后产生毒性反应,受试者的主观不适评分明显升高。0.005%、0.01%及0.025%的阿托品用药均无毒性反应,主观不适评分虽升高但可耐受。

结论

0.025%阿托品用药可能是控制近视眼发展的适宜浓度;滴眼液与凝胶两种剂型的副作用均可耐受。

Objective

The aim of this study was to explore the appropriate concentration and better formulation of atropinethat can be prescribed for controlling children myopia progression without significantly clinical visual symptoms, pupillary dilation and accommodative paralysis.

Methods

This was a randomized controlled trial with ten subjects (20 eyes) of spherical equivalent from -0.5 D to -5.0 D included. Subjects with brown iris were recruited from Beijing Tongren Hospital, in February 2017. Two of them are men and the average age is (24.8±0.79), ranging from 24 to 26 years. Atropine of 0.005%, 0.01%, 0.025% and 0.05% were administered to each subject successively. One eye was randomly given atropine eye drops with the contralateral eye gel. Ocular examinations included near visual acuity, accommodative amplitude and pupil size. Questionnaires were used to record subjects' visual symptoms. Multiple-factor repetitive measurement and analysis was used to compare the effects of different dosages and formulations on accommodative amplitude, pupil size and near visual acuity.

Results

Our results suggested that at all dosages of atropine eye drop and gel, there was certain degree of pupillary dilationand reduction in accommodative amplitudeand the effects became larger with higher dosages. Meanwhile, there was no significant difference between the dosages of 0.005%, 0.01% and 0.025% in accommodative amplitude (F=0.27, 3.28, 0.82; P>0.05), near visual acuity (F=0.14, 0.29, 0.57; P>0.05) and pupil size (F=1.70, 4.38, 0.92; P>0.05), with only the effect on pupil size larger for atropine eye gel than atropine eye drops (F=7.51, P<0.05). Subjects' complaints disappear with clinically acceptable findings for dosage of 0.005%, 0.01% and 0.025%, while 0.05% atropine presents the highest scores and toxic effects.

Conclusions

Atropine 0.025% might be the appropriate concentration to control myopia progression without significantly clinical symptoms both subjectively and objectively. What′s more, the side-effects of both formulationsare acceptable without significant differences between them.

图1 0.005%、0.01%、0.025%和0.05%阿托品滴眼液或凝胶点眼后患者瞳孔、残余调节力、近视力及主观不适评分变化图 图A显示各时间点的瞳孔直径变化;图B显示各时间点的残余调节变化;图C显示各时间点的近视力变化;图D显示受试者各项主观不适评分的平均值(图中竖线表示标准差)
表1 不同浓度的阿托品用药(包括滴眼液和凝胶)对患者瞳孔直径影响的情况
表2 不同浓度的阿托品用药(包括滴眼液和凝胶)对患者残余调节影响的情况
表3 不同浓度的阿托品用药(包括滴眼液和凝胶)对患者近视力影响的情况
[1]
Li SM, Kang MT, Wu SS, et al. Efficacy, Safety and Acceptability of Orthokeratology on Slowing Axial Elongation in Myopic Children by Meta-Analysis[J]. Current Eye Research, 2016, 41(5): 600-608.
[2]
Li SM, Kang MT, Liu Y, et al. Atropine slows myopia progression more in Asian than white children by meta-analysis [J]. Optometry and visin science, 2014, 91(3): 342-350.
[3]
Loh KL, Lu Q, Tan D, et al. Risk factors for progressive myopia in the atropine therapy for myopia study[J]. Am J Ophthalmol, 2015, 159(5): 945-949.
[4]
Chia A, Chua WH, Cheung YB, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2)[J]. Ophthalmology, 2012, 119(2): 347-354.
[5]
Morgan IG, He M. An Important Step Forward in Myopia Prevention: Low-Dose Atropine[J]. Ophthalmology, 2016, 123(2): 232-233.
[6]
Li SM, Kang MT, Liu Y, et al. Atropine slows myopia progression more in Asian than white children by meta-analysis[J]. Optometry and vision science, 2014, 91(3): 342-350.
[7]
Jeffrey CN, Erica SA, Frederick MW. Maximum atropine dose without clinical signs orsymptoms[J]. Optometry and vision science, 2013, 90(12): 1467-1472.
[8]
Sergienko NM, Nikonenko DP. Measurement of amplitude of accommodation in young persons[J]. Clin Exp Optom, 2015, 98(4): 359-361.
[9]
Li SM, Li SY, Liu LR, et al. Full correction and Undercorrection of Myopia Evaluation Trial: design and baseline data of a randomized, controlled, double-blind trial[J]. Clin Experiment Ophthalmol, 2013, 41(4): 329-338.
[10]
Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia[J]. Ophthalmic Physiol Opt, 2012, 32(1): 3-16.
[11]
Liang YB, Sun LP, Tao QS, et al. Refractive errors in a rural Chine se adult population the Handan eye study[J]. Ophthalmology, 2009, 116(11): 2119-2127.
[12]
Kim EC, Morgan IG, Kakizaki H, et al. Prevalence and risk factors for refractive errors: Korean National Health and Nutrition Examination Survey 2008-2011[J]. PLoS One, 2013, 8(11): e80361.
[13]
Morgan IG, Xiang F, Rose KA, et al. Two Year Results from the Guangzhou Outdoor Activity Longitudinal Study (GOALS)[J]. Invest Ophthalmol Vis Sci, 2012, 53(ARVO E-abstract): 2735.
[14]
Li SM, Liu LR, Li SY, et al. Design, methodology and baseline data of a school-based cohort study in Central China: the Anyang Childhood Eye Study[J]. Ophthalmic Epidemiol, 2013, 20(6): 348-359.
[15]
Liang YB, Friedman DS, Wong TY, et al. Prevalence and causes of low vision and blindness in a rural chinese adult population: the Handan Eye Study[J]. Ophthalmology, 2008, 115(11): 1965-1972.
[16]
Jones D, Luensmann D. The prevalence and impact of high myopia[J]. Eye Contact Lens, 2012, 38(3): 188-196.
[17]
Saw SM, Shih-Yen EC, Chua WH. Myopia and associated pathological complications[J]. Ophthalmic Physiol Opt, 2005, 25(5): 381-391.
[18]
Walline JJ, Vedula SS, Cotter SA, et al. Interventions to slow progression of myopia in children[J]. Cochrane Database Syst Rev, 2011, 7(12): 1-123.
[19]
Shih KC, Chan TC, Ng AL, et al. Use of Atropine for Prevention of Childhood Myopia Progression in Clinical Practice[J]. Eye Contact Lens, 2015, 42(1): 16-23.
[20]
Fang YT, Chou YJ, Pu C, et al. Prescription of atropine eye drops among children diagnosed with myopia in Taiwan from 2000 to 2007: a nationwide study[J]. Eye (Lond), 2013, 27(3): 418-424.
[21]
Song YY, Wang H, Wang BS, et al. Atropine in ameliorating the progression of myopia in children with mild to moderate myopia: a meta-analysis of controlled clinical trials[J]. J Ocul Pharmacol Ther, 2011, 27(4): 361-368.
[22]
Chua WH, Balakrishnan V, Chan YH, et al. Atropine for the treatment of childhood myopia[J]. Ophthalmology, 2006, 113(12): 2285-2291.
[23]
Liang CK, Ho TY, Li TC, et al. A combined therapy using stimulating auricular acupoints enhances lower-level atropine eyedrops when used for myopia control in school-aged children evaluated by a pilot randomized controlled clinical trial[J]. Complement Ther Med, 2008, 16(6): 305-310.
[24]
Shih YF, Chen CH, Chou AC, et al. Effects of different concentrations of atropine on controlling myopia in myopic children[J]. J Ocul Pharmacol Ther, 1999, 15(1): 85-90.
[25]
Yen MY, Liu JH, Kao SC, et al. Comparison of the effect of atropine and cyclopentolate on myopia[J]. Ann Ophthalmol, 1989, 21(5): 180-182, 7.
[26]
Fang PC, Chung MY, Yu HJ, et al. Prevention of myopia onset with 0.025% atropine in premyopic children[J]. J Ocul Pharmacol Ther, 2010, 26(4): 341-345.
[27]
Wu PC, Yang YH, Fang PC. The long-term results of using low-concentration atropine eye drops for controlling myopia progression in schoolchildren[J]. J Ocul Pharmacol Ther, 2011, 27(5): 461-466.
[28]
Tong L, Huang XL, Koh AL, et al. Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine[J]. Ophthalmology, 2009, 116(3): 572-579.
[29]
Hiraoka T, Daito M, Okamoto F, et al. Time course of changes in ocular aberrations after instillation of carteolol long-acting solution and timolol gel-forming solution[J]. J Ocul Pharmacol Ther, 2011, 27(2): 1791-185.
[30]
Rosenlund EF. The intraocular pressure lowering effect of timolol in gel-forming solution[J]. Acta Ophthalmol Scand, 1996, 74(2): 160-162.
[31]
Fan DS, Lam DS, Chan CK, et al. Topical atropine in retarding myopic progression and axial length growth in children with moderate to severe myopia: a pilot study[J]. Jpn J Ophthalmol, 2007, 51(1): 27-33.
[32]
Luu CD, Lau AM, Koh AH, et al. Multifocal electroretinogram in children on atropine treatment for myopia[J]. Br J Ophthalmol, 2005, 89(2): 151-153.
[1] 廖莹, 邢向辉. 南京市视力障碍儿童患龋状况、龋活跃性和口腔卫生习惯调查及相关性分析[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 222-227.
[2] 娜荷雅, 朱丹. 红光疗法在儿童近视眼防控中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 252-256.
[3] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[4] 任美琪, 李俊红, 冯张青. 间歇性外斜视新型热点问题的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 162-166.
[5] 唐悆, 邓宏伟, 陶政旸, 吕宗岳. 基于Gabor视标的视知觉学习治疗难治性弱视的临床疗效观察[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 134-139.
[6] 赵艳, 朱丹. 低浓度阿托品在儿童近视眼防控中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 124-128.
[7] 宗晨曦, 肖林, 宋红欣. 人工智能视力筛查在近视眼防控中的应用研究与展望[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 60-64.
[8] 付玥川, 陶晨. 角膜塑形镜对儿童青少年低度近视眼进展控制长期效果及其影响因素的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 287-292.
[9] 张宁宁, 慕璟玉, 马晓玲, 李小龙, 王雁, 赵勇. 儿童青少年高度近视眼眼底特征的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 252-256.
[10] 张瑞恒, 董力, 魏文斌. 雷帕霉素靶蛋白复合体1通路在近视眼进展中的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 247-251.
[11] 许馨月, 陈涛, 苏玉婷, 张作明. 青少年近视眼预防与控制技术研究的新进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 173-177.
[12] 曹晓光, 何燕玲, 鲍永珍, 王凯, 赵明威. 飞秒激光小切口角膜基质透镜取出术矫正散光的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 57-62.
[13] 吴彬阁, 何婧, 常颖, 赵世强, 接英. 内蒙古自治区包头市各民族青少年眼部生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 31-36.
[14] 姚沁楠, 万修华. 有晶状体眼后房型人工晶状体植入术与角膜屈光手术治疗高度近视眼有效性、安全性及可预测性的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 346-352.
[15] 李伟, 王青. 延续性护理干预对老年2型糖尿病视网膜病变患者血糖和视力水平的控制效果[J]. 中华老年病研究电子杂志, 2021, 08(03): 48-51.
阅读次数
全文


摘要