[1] |
Chen G, Zhang J, Qiao Q, et al. Advances in dynamic visual acuity test research[J]. Frontiers in neurology, 2023, PMID: 37426939.
|
[2] |
Mañago MM, Schenkman M, Berliner J, et al. Gaze stabilization and dynamic visual acuity in people with multiple sclerosis[J]. Journal of vestibular research, 2016, 26(5-6): 469-477.
|
[3] |
Medina J. Using single cases to understand visual processing: The magnocellular pathway[J]. Cognitive neuropsychology, 2022, 39(1-2): 106-108.
|
[4] |
Strupp M, Kim JS, Murofushi T, et al. Bilateral vestibulopathy: Diagnostic criteria Consensus document of the Classification Committee of the Bárány Society[J]. Journal of vestibular research, 2017, 27(4): 177-189.
|
[5] |
王文博. 大细胞通路的拓扑性质知觉优势[D]. 中国科学院大学,2020:2-9.
|
[6] |
Vermaas JR, Gehringer JE, Wilson TW, et al. Children with cerebral palsy display altered neural oscillations within the visual MT/V5 cortices[J]. Neuroimage Clinical, 2019, PMID: 31176292.
|
[7] |
Galletti C, Fattori P. The dorsal visual stream revisited: Stable circuits or dynamic pathways?[J]. Cortex, 2018, 98: 203-217.
|
[8] |
Nassi JJ, Callaway EM. Parallel processing strategies of the primate visual system[J]. Nature reviews Neuroscience, 2009, 10(5): 360-372.
|
[9] |
Hussey KA, Hadyniak SE, Johnston RJ. Patterning and Development of Photoreceptors in the Human Retina[J]. Frontiers in cell and developmental biology, 2022, PMID: 35493094.
|
[10] |
Masri RA, Grünert U, Martin PR. Analysis of Parvocellular and Magnocellular Visual Pathways in Human Retina[J]. The Journal of Neuroscience, 2020, 40(42): 8132-8148.
|
[11] |
Jacobs GH. Photopigments and the dimensionality of animal color vision[J]. Neuroscience and biobehavioral reviews, 2018, 86: 108-130.
|
[12] |
Quinn N, Csincsik L, Flynn E, et al. The clinical relevance of visualising the peripheral retina[J]. Progress in retinal and eye research, 2019, 68: 83-109.
|
[13] |
Hansen T, Pracejus L, Gegenfurtner KR. Color perception in the intermediate periphery of the visual field[J]. Journal of vision, 2009, 9(4): 1-12.
|
[14] |
Strettoi E, Masri RA, Grünert U. All amacrine cells in the primate fovea contribute to photopic vision[J]. Scientific reports, 2018, PMID: 30401922.
|
[15] |
Peng YR, Shekhar K, Yan W, et al. Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina[J]. Cell, 2019, 176(5): 1222-1237.
|
[16] |
Grünert U, Martin PR. Cell types and cell circuits in human and non-human primate retina[J]. Progress in Retinal and Eye Research, 2020, PMID: 32032773.
|
[17] |
Wool LE, Packer OS, Zaidi Q, et al. Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina[J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2019, 39(40): 7893-7909.
|
[18] |
Dacey D, Packer OS, Diller L, et al. Center surround receptive field structure of cone bipolar cells in primate retina[J]. Vision research, 2000, 40(14): 1801-1811.
|
[19] |
Crook JD, Packer OS, Dacey DM. A synaptic signature for ON- and OFF center parasol ganglion cells of the primate retina[J]. Visual neuroscience, 2014, 31(1): 57-84.
|
[20] |
Solomon SG. Retinal ganglion cells and the magnocellular, parvocellular, and koniocellular subcortical visual pathways from the eye to the brain[M]. Handbook of clinical neurology, 2021, 178: 31-50.
|
[21] |
Kling A, Field GD, Brainard DH, et al. Probing Computation in the Primate Visual System at Single-Cone Resolution[J]. Annual review of neuroscience, 2019, 42: 169-186.
|
[22] |
Dougherty K, Schmid MC, Maier A. Binocular response modulation in the lateral geniculate nucleus[J]. Journal of Comparative Neurology, 2019, 527(3): 522-534.
|
[23] |
Denison RN, Vu AT, Yacoub E, et al. Functional mapping of the magnocellular and parvocellular subdivisions of human LGN[J]. Neuroimage, 2014, 102(2): 358-369.
|
[24] |
Yan C, Christophel TB, Allefeld C, et al. Categorical working memory codes in human visual cortex[J]. Neuroimage, 2023, PMID: 37191658.
|
[25] |
Parker AJ, Smith JE, Krug K. Neural architectures for stereo vision[J]. Philosophical transactions of the Royal Society of London, 2016, 371(1697): 20150261.
|
[26] |
Kaplan E, Shapley RM. The primate retina contains 2 types of ganglion-cells, with high and low contrast sensitivity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(8): 2755-2757.
|
[27] |
Shapley R. Visual sensitivity and parallel retinocortical channels[J]. Annual review of psychology, 1990, 41: 635-658.
|
[28] |
Thoreson WB, Dacey DM. Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina[J]. Physiological reviews, 2019, 99(3): 1527-1573.
|
[29] |
Conway BR. Color signals through dorsal and ventral visual pathways[J]. Visual neuroscience, 2014, 31(2): 197-209.
|
[30] |
Edwards M, Goodhew SC, Badcock DR. Using perceptual tasks to selectively measure magnocellular and parvocellular performance: Rationale and a user's guide[J]. Psychonomic bulletin & review, 2021, 28(4): 1029-1050.
|
[31] |
Skottun BC. On the use of spatial frequency to isolate contributions from the magnocellular and parvocellular systems and the dorsal and ventral cortical streams[J]. Neuroscience and biobehavioral reviews, 2015, 56: 266-275.
|
[32] |
Skottun BC. A few words on differentiating magno- and parvocellular contributions to vision on the basis of temporal frequency[J]. Neuroscience and biobehavioral reviews, 2016, 71: 756-760.
|
[33] |
Boulton JC, Baker CL. Motion detection is dependent on spatial frequency not size[J]. Vision research, 1991, 31(1): 77-87.
|
[34] |
Goodhew SC, Lawrence RK, Edwards M. Testing the generality of the zoom-lens model: Evidence for visual-pathway specific effects of attended-region size on perception[J]. Attention, Perception & Psychophysics, 2017, 79(4): 1147-1164.
|
[35] |
Kling A, Gogliettino AR, Shah NP, et al. Functional Organization of Midget and Parasol Ganglion Cells in the Human Retina[M]. Cold Spring Harbor Laboratory. 2020, PMID: 7882750.
|
[36] |
Atilgan N, Yu SM, He S. Visual crowding effect in the parvocellular and magnocellular visual pathways[J]. Journal of vision, 2020, 20(8): 6.
|
[37] |
Whitney D, Levi DM. Visual crowding: a fundamental limit on conscious perception and object recognition[J]. Trends in cognitive sciences, 2011, 15(4): 160-168.
|
[38] |
Wu TY, Wang YX, Li XM. Applications of dynamic visual acuity test in clinical ophthalmology[J]. International journal of ophthalmology, 2021, 14(11): 1771-1778.
|
[39] |
Erdinest N, London N. Dynamic visual acuity and methods of measurement[J]. Journal of optometry, 2022, 15(3): 247-248.
|
[40] |
Gupta N, Ang LC, Noël De Tilly L, et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex[J]. The British journal of ophthalmology, 2006, 90(6): 674-678.
|
[41] |
Zhang P, Wen W, Sun X, et al. Selective reduction of fMRI responses to transient achromatic stimuli in the magnocellular layers of the LGN and the superficial layer of the SC of early glaucoma patients[J]. Human brain mapping, 2016, 37(2): 558-569.
|
[42] |
Weber AJ, Chen H, Hubbard WC, et al. Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus[J]. Investigative ophthalmology & visual science, 2000, 41(6): 1370-1379.
|
[43] |
Ren X, Wang Y, Wu T, et al. Binocular dynamic visual acuity in dry eye disease patients[J]. Frontiers in neuroscience, 2023, PMID: 36968505.
|
[44] |
Lucieer F, Duijn S, Van Rompaey V, et al. Full Spectrum of Reported Symptoms of Bilateral Vestibulopathy Needs Further Investigation-A Systematic Review[J]. Frontiers in neurology, 2018, 9: 352.
|
[45] |
Starkov D, Strupp M, Pleshkov M, et al. Diagnosing vestibular hypofunction: an update[J]. Journal of neurology, 2021, 268(1): 377-385.
|
[46] |
Michel L, Laurent T, Alain T. Rehabilitation of dynamic visual acuity in patients with unilateral vestibular hypofunction: earlier is better[J]. European Archives of Oto-Rhino-Laryngology, 2020, 277(1): 103-113.
|
[47] |
Atilla MH, Kesici GG. Dynamic visual acuity test findings of migraine patients: Observational case-control study[J]. American journal of otolaryngology, 2022, PMID: 35952527.
|
[48] |
Tahedl M, Levine SM, Greenlee MW, et al. Functional Connectivity in Multiple Sclerosis: Recent Findings and Future Directions[J]. Frontiers in neurology, 2018, PMID: 30364281.
|
[49] |
Thurtell MJ, Bala E, Yaniglos SS, et al. Evaluation of optic neuropathy in multiple sclerosis using low-contrast visual evoked potentials[J]. Neurology, 2009, 73(22): 1849-1857.
|
[50] |
Alcubierre R, Sánchez-Dalmau BF, Muñoz S. Multiple sclerosis in ophthalmology: beyond optic neuritis[J]. Medicina clinical, 2020, 155(2): 70-76.
|
[51] |
Seraji M, Mohebbi M, Safari A, et al. Multiple sclerosis reduces synchrony of the magnocellular pathway[J]. PloS one, 2021, 16(8): e0255324.
|
[52] |
Yeshurun Y, Sabo G. Differential effects of transient attention on inferred parvocellular and magnocellular processing[J]. Vision research, 2012, 74: 21-29.
|
[53] |
Gimmon Y, Schubert MC. Vestibular Testing-Rotary Chair and Dynamic Visual Acuity Tests[J]. Advances in oto-rhino-laryngology, 2019, 82: 39-46.
|