切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 14 -20. doi: 10.3877/cma.j.issn.2095-2007.2019.01.003

论著

转化生长因子β1对人巩膜成纤维细胞Smad泛素化调节因子2和Ⅰ型胶原α1影响的研究
陈丽娟1, 陈婷2, 陈雪兰2, 叶文文2, 黄丽娟2, 胡建民2,()   
  1. 1. 362000 泉州,福建医科大学附属第二医院眼科 视障辅助技术福建省高校工程研究中心;363000 漳州卫生职业学院眼视光技术教研室
    2. 362000 泉州,福建医科大学附属第二医院眼科 视障辅助技术福建省高校工程研究中心
  • 收稿日期:2019-01-27 出版日期:2019-02-28
  • 通信作者: 胡建民
  • 基金资助:
    福建省自然科学基金资助项目(2015J01382); 福建省医学创新课题(2011-cxb-23); 福建省卫生系统中青年骨干人才培养项目(2015-ZQN-ZD-25)

Effect of transforming growth factor β1 on Smad ubiquitination regulatory factor 2 and collagen type Ⅰ α1 in human fetal scleral fibroblasts

Lijuan Chen1, Ting Chen2, Xuelan Chen2, Wenwen Ye2, Lijuan Huang2, Jianmin Hu2,()   

  1. 1. Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China; Department of Optometry, Zhangzhou Health Vocational College, Zhangzhou 363000, China
    2. Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
  • Received:2019-01-27 Published:2019-02-28
  • Corresponding author: Jianmin Hu
引用本文:

陈丽娟, 陈婷, 陈雪兰, 叶文文, 黄丽娟, 胡建民. 转化生长因子β1对人巩膜成纤维细胞Smad泛素化调节因子2和Ⅰ型胶原α1影响的研究[J]. 中华眼科医学杂志(电子版), 2019, 09(01): 14-20.

Lijuan Chen, Ting Chen, Xuelan Chen, Wenwen Ye, Lijuan Huang, Jianmin Hu. Effect of transforming growth factor β1 on Smad ubiquitination regulatory factor 2 and collagen type Ⅰ α1 in human fetal scleral fibroblasts[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(01): 14-20.

目的

探讨Smad泛素化调节因子2(Smurf2)在人胚胎眼巩膜成纤维细胞(HFSFs)中的表达,检测转化生长因子β1(TGF-β1)影响下HFSFs中Smurf2和Ⅰ型胶原α1(COLIA1)含量的变化。

方法

HFSFs复苏并稳定传代后,用免疫细胞化学法检测细胞中Smurf2的表达。分别用不同浓度的TGF-β1(0 、1 ng/ml、5 ng/ml及10 ng/ml)处理HFSFs 24 h以及10 ng/ml TGF-β1处理HFSFs不同时长(1 h、6 h、12 h及24 h)后,用实时荧光定量法检测各组Smurf2信使核糖核酸(mRNA)和COLIA1 mRNA表达水平。数据以均数±标准差(±s )描述,不同浓度和不同时长的组间比较采用单因素方差分析,当差异有统计学意义时,进一步采用SNK法两两比较。

结果

免疫细胞化学检测的结果显示,HFSFs中有COLIA1 mRNA和Smurf2蛋白的表达。与空白对照组比较,TGF-β1 10 ng/ml组COLIA1 mRNA的表达呈上升趋势(F=3.17,P<0.05),TGF-β1 5 ng/ml、10 ng/ml组Smurf2 mRNA表达上调(F=2.35,2.00;P<0.05)。10 ng/ml TGF-β1干预HFSFs培养1 h、6 h、12 h及24 h后,24 h组COLIA1 mRNA表达显著升高(F=29.20,P<0.05)。Smurf2 mRNA表达改变呈先上升后下降趋势,在6 h达到最高(F=10.65,P<0.05)。

结论

TGF-β1可能通过调控HFSFs Smurf2的表达,诱导HFSFs COLIA1的合成。

Objective

The aim of this study was to investigate the expression of Smad ubiquitination regulatory factor 2 (Smurf 2) in human fetal scleral fibroblasts (HFSFs) cells, and the changes of Smurf 2 and collagen type Ⅰ α1 (COLIA1) in HFSFs induced by transforming growth factor-beta 1 (TGF-β1).

Methods

After recovery and stable passage of HFSFs, expression of Smurf2 in cells was detected by immunocytochemistry. HFSFs were treated with different concentrations of TGF-β1(0 , 1 ng/ml, 5 ng/ml, 10 ng/ml) for 24 hours, respectively, and co-cultured with TGF-β1 (10 ng/ml) for 1 hour, 6 hours, 12 hours, and 24 hours. Then, the expression of COLIA1 messenger RNA (mRNA) and Smurf2 mRNA were detected by reverse transcription-polymerase chain reaction. Data was described by (±s ). One-way ANOVA was used for comparison between groups, then SNK test was used if difference was statistically significant.

Results

The results showed that COLIA1 mRNA and Smurf2 protein expressed in HFSFs. COLIA1 mRNA expressed an upward trend in 10 ng/ml TGF-β1 group compared with control group (F=3.17, P<0.05), as well as Smurf2 mRNA in 5 ng/ml TGF-β1 group and 10 ng/ml TGF-β1 group (F=2.35, 2.00; P<0.05). After 1 hour, 6 hours, 12 hours, 24 hours for HFSFs co-cultured with 10 ng/ml TGF-β1, the expression of COLIA1 mRNA increased significantly in 24 hours group (F=29.20, P<0.05). While, the expression of Smurf2 mRNA increased first and then decreased, reaching the highest level at 6 hours (F=10.65, P<0.05).

Conclusion

TGF-β1 may induce the synthesis of HFSFs COLIA1 by regulating the expression of HFSFs Smurf2.

表1 人Smurf2、COLIA1信使核糖核酸检测用引物序列
图3 不同时长转化生长因子β1干预对人胚胎眼巩膜成纤维细胞Ⅰ型胶原α1信使核糖核酸和Smad泛素化调节因子2信使核糖核酸表达的影响 3A图示实时逆转录-聚合酶链反应检测不同时长转化生长因子β1干预对人胚胎眼巩膜成纤维细胞Ⅰ型胶原α1信使核糖核酸相对表达量的影响;3B图示实时逆转录-聚合酶链反应检测不同时长转化生长因子β1干预对人胚胎眼巩膜成纤维细胞Ⅰ型胶原α1信使核糖核酸相对表达量影响。*与对照组比较,P<0.05。
表2 不同浓度TGF-β1干预对HFSFs COLIA1 mRNA和Smurf2 mRNA表达的影响
表3 不同时长TGF-β1干预对HFSFs COLIA1 mRNA和Smurf2 mRNA表达的影响
图4 Smad泛素化调节因子2降解通路的作用底物 图示Smad泛素化调节因子2对TGF-β Smad信号通路中负向调节蛋白的泛素化降解机制Smad泛素化调节因子2蛋白在TGF-β1 Smad信号通路中的可能作用
[1]
李翯,周翔天,瞿佳. 碱性成纤维细胞生长因子和转化生长因子-β在实验性近视中的研究进展[J]. 眼视光学杂志20046(3):193-195,198.
[2]
Praveen K, Gal LC, Michael B. Smurfs in protein homeostasis, signaling, and cancer[J]. Front Oncol, 2018, 8: 295.
[3]
杨俊侠,曹述任,张敏. Smad泛素化调节因子2在转化生长因子β1诱导人肺成纤维细胞活化中的作用及其分子机制[J]. 吉林大学学报(医学版)201541(5):891-897.
[4]
Fukasawa H, Yamamoto T, Togawa A, et al. Ubiquitin-dependent degradation of SnoN and Ski is increased in renal fibrosis induced by obstructive injury[J]. Kidney Int, 2006, 69(10): 1733-1740.
[5]
Cai Y, Shen XZ, Zhou CH, et al. Abnormal expression of Smurf2 during the process of rat liver fibrosis[J]. Chin J Dig Dis, 2006, 7(4): 237-245.
[6]
McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia[J]. Prog Retin Eye Res, 2003, 22(3): 307-338.
[7]
Norton TT, Rada JA. Reduced extracellular matrix in mammalian sclera with induced myopia[J]. Vision Res, 1995, 35(9): 1271-1281.
[8]
McBrien NA, Jobling AI, Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors[J]. Optom Vis Sci, 2009, 86(1): E23-E30.
[9]
Lin HJ, Wan L, Tsai Y, et al. Sclera-related gene polymorphisms in high myopia[J]. Mol Vis, 2009, 15(176-178): 1655-1663.
[10]
Kusakari T, Sato T, Tokoro T. Visual deprivation stimulates the exchange of the fibrous sclera into the cartilaginous sclera in chicks[J]. Exp Eye Res, 2001, 73(4): 533-546.
[11]
Jobling AI, Gentle A, Metlapally R, et al. Regulation of scleral cell contraction by transforming growth factor-beta and stress: competing roles in myopic eye growth[J]. J Biol Chem, 2009, 284(4): 2072-2079.
[12]
Mcbrien NA, Jobling AI, Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors[J]. Optom Vis Sci, 2009, 86(1): E23-E30.
[13]
Seko Y, Shimokawa H, Tokoro T. Expression of bFGF and TGF-beta 2 in experimental myopia in chicks[J]. Invest Ophthalmol Vis Sci, 1995, 36(6): 1183-1187.
[14]
Honda S, Fujii S, Sekiya Y, et al. Retinal control on the axial length mediated by transforming growth factor-beta in chick eye[J]. Invest Ophthalmol Vis Sci, 1996, 37(12): 2519-2526.
[15]
曾爱萍,曾水清,程扬. 转化生长因子β1对培养的人RPE细胞MMP和TIMP-1 mRNA表达的影响[J]. 眼科新进展200626(2):81-84.
[16]
Xiaofen Z, Renyuan C. Effects of TGF-β on human embryonic retinal pigment epithelium cells[J]. Chinese Ophthalmic Research, 2007, 25(1): 14-17.
[17]
Siegwart J, Norton TT. Selective regulation of MMP and TIMP mRNA levels in tree shrew sclera during minus lens compensation and recovery[J]. Invest Ophthalmol Vis Sci, 2005, 46(10): 3484-3492.
[18]
Liu R, Ahmed KM, Nantajit D, et al. Therapeutic effects of α-lipoic acid on bleomycin-induced pulmonary fibrosis in rats[J]. Int J Mol Med, 2007, 19(6): 865-873.
[19]
刘海霞,杨坤禹,项楠,等. 转化生长因子-β1转基因小鼠巩膜厚度研究[J]. 华中科技大学学报(医学版)200736(5):655-657,670.
[20]
Edwards DR, Murphy G, Reynolds JJ, et al. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor[J]. EMBO J, 1987, 6(7): 1899-1904.
[21]
Hu J, Cui D, Yang X, et al. Bone morphogenetic protein-2: a potential regulator in scleral remodeling[J]. Mol Vis, 2008, 14(12): 2373-2380.
[22]
邢凯,吴宁玲,亢泽峰,等. 高度近视眼巩膜细胞外基质中相关胶原分子机制的研究进展[J]. 中华眼科医学杂志(电子版)20188(1):44-48.
[23]
Shelton L, Rada JS. Effects of cyclic mechanical stretch on extracellular matrix synthesis by human scleral fibroblasts[J]. Exp Eye Res, 2007, 84(2): 314-322.
[24]
蔡瑜,徐奕,沈锡中. Smad泛素化调节因子2在肝纤维化过程中对结缔组织生长因子的作用研究[J]. 内科理论与实践20127(4):305-309.
[25]
Inoue Y, Imamura T. Regulation of TGF-beta family signaling by E3 ubiquitin ligases[J]. Cancer Sci, 2008, 99(11): 2107-2112.
[26]
Izzi L, Attisano L. Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation[J]. Oncogene, 2004, 23(11): 2071-2078.
[27]
Itoh S, ten Dijke P. Negative regulation of TGF-beta receptor/Smad signal transduction[J]. Curr Opin Cell Biol, 2007, 19(2): 176-184.
[28]
Ito I, Hanyu A, Wayama M, et al. Estrogen inhibits transforming growth factor beta signaling by promoting Smad2/3 degradation[J]. J Biol Chem, 2010, 285(19): 14747-14755.
[29]
Bizet AA, Tran-Khanh N, Saksena A, et al. CD109-mediated degradation of TGF-β receptors and inhibition of TGF-β responses involve regulation of SMAD7 and Smurf2 localization and function[J]. J Cell Biochem, 2012, 113(1): 238-246.
[30]
Yang Q, Chen SP, Zhang XP, et al. Smurf2 participates in human trophoblast cell invasion by inhibiting TGF-beta type I receptor[J]. J Histochem Cytochem, 2009, 57(6): 605-612.
[31]
Chong PA, Lin H, Wrana JL, et al. An expanded WW domain recognition motif revealed by the interaction between Smad7 and the E3 ubiquitin ligase Smurf2[J]. J Biol Chem, 2006, 281(25): 17069-17075.
[32]
Morén A, Imamura T, Miyazono K, et al. Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases[J]. J Biol Chem, 2005, 280(23): 22115-22123.
[33]
Nomura N, Sasamoto S, Ishii S, et al. Isolation of human cDNA clones of ski and the ski-related gene, sno[J]. Nucleic Acids Res, 1989, 17(14): 5489-5500.
[34]
Debigaré R, Price SR. Proteolysis, the ubiquitin-proteasome system, and renal diseases[J]. Am J Physiol Renal Physiol, 2003, 285(1): F1-F8.
[35]
Asano Y, Ihn H, Yamane K, et al. Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibroblasts[J]. J Clin Invest, 2004, 113(2): 253-264.
[36]
刘晓政,田春阳,夏永欣. Smurf在肝纤维化中的表达及其对TGF-β/Smad信号传导的影响[J]. 广东医学201738(6):834-838.
[37]
Ohashi N, Yamamoto T, Uchida C, et al. Transcriptional induction of Smurf2 ubiquitin ligase by TGF-beta[J]. FEBS Lett, 2005, 579(12): 2557-2563.
[38]
潘红卫,高岩,曾骏文. 转化生长因子β1对小鼠巩膜成纤维细胞DNA和胶原合成的影响及其在近视形成中的作用[J]. 中国临床康复20059(18):160-162.
[39]
Li H, Cui D, Zhao F, et al. BMP-2 is involved in scleral remodeling in myopia development[J]. PLoS One, 2015, 10(5): e0125219.
[1] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[2] 娜荷雅, 朱丹. 红光疗法在儿童近视眼防控中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 252-256.
[3] 任美琪, 李俊红, 冯张青. 间歇性外斜视新型热点问题的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 162-166.
[4] 赵艳, 朱丹. 低浓度阿托品在儿童近视眼防控中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 124-128.
[5] 宋红欣, 孙璐, 王庆强. 近视性屈光参差少年儿童眼部屈光生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 88-93.
[6] 郝壮, 马济远, 何梦梅, 李兴育, 陆新婷, 武静, 周健. 迟发性囊袋阻滞综合征临床特征、治疗方法及其疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 70-75.
[7] 曹宇, 苗泽群, 王凯, 王乐今. 关注交联技术的发展及巩膜交联技术在控制近视发展中的潜在应用价值[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 65-69.
[8] 宗晨曦, 肖林, 宋红欣. 人工智能视力筛查在近视眼防控中的应用研究与展望[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 60-64.
[9] 付玥川, 陶晨. 角膜塑形镜对儿童青少年低度近视眼进展控制长期效果及其影响因素的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 287-292.
[10] 张宁宁, 慕璟玉, 马晓玲, 李小龙, 王雁, 赵勇. 儿童青少年高度近视眼眼底特征的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 252-256.
[11] 张瑞恒, 董力, 魏文斌. 雷帕霉素靶蛋白复合体1通路在近视眼进展中的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 247-251.
[12] 许馨月, 陈涛, 苏玉婷, 张作明. 青少年近视眼预防与控制技术研究的新进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 173-177.
[13] 曹晓光, 何燕玲, 鲍永珍, 王凯, 赵明威. 飞秒激光小切口角膜基质透镜取出术矫正散光的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 57-62.
[14] 吴彬阁, 何婧, 常颖, 赵世强, 接英. 内蒙古自治区包头市各民族青少年眼部生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 31-36.
[15] 刘天龙. 改良型超声乳化手术治疗高度近视合并白内障疗效观察[J]. 中华老年病研究电子杂志, 2023, 10(01): 30-33.
阅读次数
全文


摘要