切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (02) : 65 -69. doi: 10.3877/cma.j.issn.2095-2007.2023.02.001

述评

关注交联技术的发展及巩膜交联技术在控制近视发展中的潜在应用价值
曹宇, 苗泽群, 王凯, 王乐今()   
  1. 100044 北京大学人民医院眼科2020级硕士研究生
    100044 北京大学人民医院眼视光中心 视网膜脉络膜疾病诊治研究北京市重点实验室
  • 收稿日期:2022-04-10 出版日期:2023-04-28
  • 通信作者: 王乐今
  • 基金资助:
    国家自然科学基金项目(31427801); 首都卫生发展科研专项基金项目(2022-1G-4083)

Pay attention to the development of cross-linking technology and the potential application value of scleral cross-linking technology in controlling myopia development

Yu Cao, Zequn Miao, Kai Wang, Lejin Wang()   

  1. Master′s degree 2020, Peking University People′s Hospital, Beijing 100044, China
    Department of Ophthalmology, Peking University People′s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, China
  • Received:2022-04-10 Published:2023-04-28
  • Corresponding author: Lejin Wang
引用本文:

曹宇, 苗泽群, 王凯, 王乐今. 关注交联技术的发展及巩膜交联技术在控制近视发展中的潜在应用价值[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 65-69.

Yu Cao, Zequn Miao, Kai Wang, Lejin Wang. Pay attention to the development of cross-linking technology and the potential application value of scleral cross-linking technology in controlling myopia development[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(02): 65-69.

近视是视力损伤的常见原因之一,而病理性近视由于存在巩膜结构的重塑,在屈光状态异常之外还存在眼部结构的改变。近年来,许多学者对控制近视发展的方法进行了探索,而通过交联技术增强巩膜强度的方法备受关注。交联技术包括物理方法和化学方法,目前最常用的是紫外线-核黄素交联法。作为一种既往成熟应用于各种角膜疾病治疗的手段,巩膜交联技术用以增强巩膜强度的研究为近视发展的控制提供了重要思路。本文中笔者对近年来交联技术的发展和巩膜交联技术用于控制近视发展的研究与应用进行评述。

Myopia is one of the common causes of visual impairment, and pathological myopia, due to the reshaping of the sclera structure, also involves changes in the eye structure in addition to abnormal refractive status. In recent years, methods to control the development of myopia have been explored, and the method of enhancing scleral strength through cross-linking technology has been paid more attention. Crosslinking technology includes physical methods and chemical methods. At present, the most commonly used method is ultraviolet Riboflavin crosslinking. As a previously mature method for the treatment of various corneal diseases, understanding scleral cross-linking technology using enhancing scleral strength provides important ideas for the control of myopia development. In this paper, the research and application of scleral cross-linking technology in controlling the development of myopia were reviewed in recent years.

[1]
Kumar A, Chawla R, Kumawat D, et al. Insight into high myopia and the macula[J]. Indian J Ophthalmol, 2017, 65(2): 85-91.
[2]
Chan NS, Teo K, Cheung CM. Epidemiology and Diagnosis of Myopic Choroidal Neovascularization in Asia[J]. Eye Contact Lens, 2016, 42(1): 48-55.
[3]
Wenbo L, Congxia B, Hui L. Genetic and environmental-genetic interaction rules for the myopia based on a family exposed to risk from a myopic environment[J]. Gene, 2017, 626: 305-308.
[4]
Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus[J]. Am J Ophthalmol, 2003, 135(5): 620-627.
[5]
Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles[J]. Ocul Surf., 2013, 11(2): 65-74.
[6]
Seiler TG, Komninou MA, Nambiar MH, et al. Oxygen Kinetics During Corneal Cross-linking With and Without Supplementary Oxygen[J]. Am J Ophthalmol, 2021, 223: 368-376.
[7]
Huang R, Choe E, Min DB. Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction between riboflavin and singlet oxygen[J]. J Food Sci, 2004, 69: 726-732.
[8]
Kamaev P, Friedman MD, Sherr E, et al. Photochemical kinetics of corneal cross-linking with riboflavin[J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 2360-2367.
[9]
Cifariello F, Minicucci M, Di Renzo F, et al. Epi-Off versus Epi-On Corneal Collagen Cross-Linking in Keratoconus Patients: A Comparative Study through 2-Year Follow-Up[J]. J Ophthalmol, 2018: 4947983.
[10]
Abdel-Radi M, Eldaly Z, Abdelmotaal H, et al. Correlation between corneal demarcation line depth in epithelium-off and trans-epithelium accelerated corneal cross linking and keratoconus progression[J]. Int J Ophthalmol, 2020, 13(6): 907-912.
[11]
Bradford S, Mikula E, Xie Y, et al. Enhanced Transepithelial Riboflavin Delivery Using Femtosecond Laser-Machined Epithelial Microchannels[J]. Transl Vis Sci Technol, 2020, 9(6): 1.
[12]
Hayes S, Morgan SR, O'Brart DP, et al. A study of stromal riboflavin absorption in ex vivo porcine corneas using new and existing delivery protocols for corneal cross-linking[J]. Acta Ophthalmol, 2016, 94(2): e109-e117.
[13]
Aldahlawi NH, Hayes S, O'Brart DPS, et al. An investigation into corneal enzymatic resistance following epithelium-off and epithelium-on corneal cross-linking protocols[J]. Exp Eye Res, 2016, 153: 141-151.
[14]
Rong S, Wang C, Han B, et al. Iontophoresis-assisted accelerated riboflavin/ultraviolet A scleral cross-linking: A potential treatment for pathologic myopia[J]. Exp Eye Res, 2017, 162: 37-47.
[15]
Cassagne M, Laurent C, Rodrigues M, et al. Iontophoresis Transcorneal Delivery Technique for Transepithelial Corneal Collagen Crosslinking With Riboflavin in a Rabbit Model[J]. Invest Ophthalmol Vis Sci, 2016, 57(2): 594-603.
[16]
Vinciguerra P, Mencucci R, Romano V, et al. Imaging mass spectrometry by matrix assisted laser desorption/ionization and stress-strain measurements in iontophoresis transepithelial corneal collagen cross-linking[J]. Biomed Res Int, 2014: 404587.
[17]
Caruso C, Ostacolo C, Epstein RL, et al. Transepithelial Corneal Cross-Linking With Vitamin E-Enhanced Riboflavin Solution and Abbreviated, Low-Dose UV-A: 24-Month Clinical Outcomes[J]. Cornea, 2016, 35(2): 145-150.
[18]
Wollensak G, Iomdina E. Long-term biomechanical properties after collagen crosslinking of sclera using glyceraldehyde[J]. Acta Ophthalmol, 2008, 86(8): 887-893.
[19]
Liu TX, Luo X, Gu YW, et al. Correlation of discoloration and biomechanical properties in porcine sclera induced by genipin[J]. Int J Ophthalmol, 2014, 7(4): 621-625.
[20]
Wong FF, Lari DR, Schultz DS, et al. Whole globe inflation testing of exogenously crosslinked sclera using genipin and methylglyoxal[J]. Exp Eye Res, 2012, 103: 17-21.
[21]
Babar N, Kim M, Cao K, et al. Cosmetic preservatives as therapeutic corneal and scleral tissue cross-linking agents[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 1274-1282.
[22]
Kobashi H, Rong SS. Corneal Collagen Cross-Linking for Keratoconus: Systematic Review[J]. Biomed Res Int, 2017: 8145651.
[23]
Hersh PS, Stulting RD, Muller D, et al. U.S. Multicenter Clinical Trial of Corneal Collagen Crosslinking for Treatment of Corneal Ectasia after Refractive Surgery[J]. Ophthalmology, 2017, 124(10): 1475-1484.
[24]
Lim EWL, Lim L. Review of Laser Vision Correction (LASIK, PRK and SMILE) with Simultaneous Accelerated Corneal Crosslinking-Long-term Results[J]. Curr Eye Res, 2019, 44(11): 1171-1180.
[25]
Seven I, Sinha Roy A, Dupps WJ, et al. Patterned corneal collagen crosslinking for astigmatism: computational modeling study[J]. J Cataract Refract Surg, 2014, 40(6): 943-953.
[26]
Bettis DI, Hsu M, Moshirfar M. Corneal collagen cross-linking for nonectatic disorders: a systematic review[J]. J Refract Surg, 2012, 28(11): 798-807.
[27]
Ting DSJ, Henein C, Said DG, et al. Photoactivated chromophore for infectious keratitis - Corneal cross-linking (PACK-CXL): A systematic review and meta-analysis[J]. Ocul Surf, 2019, 17(4): 624-634.
[28]
Downs JC, Roberts MD, Burgoyne CF. Mechanical environment of the optic nerve head in glaucoma[J]. Optom Vis Sci, 2008, 85(6): 425-435.
[29]
Thornton IL, Dupps WJ, Sinha RA, et al. Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking[J]. Invest Ophthalmol Vis Sci, 2009, 50(3): 122733.
[30]
Korneva A, Nguyen C, Schaub J, et al. Biomechanical effects on the mouse optic nerve head in experimental scleral crosslinking in glaucoma[J]. Invest Ophthalmol Vis Sci, 2019, 60(9): 6188.
[31]
Wollensak G, Spoerl E. Collagen crosslinking of human and porcine sclera[J]. J Cataract Refract Surg, 2004, 30(3): 689-695.
[32]
Dotan A, Kremer I, Livnat T, et al. Scleral cross-linking using riboflavin and ultraviolet-a radiation for prevention of progressive myopia in a rabbit model[J]. Exp Eye Res, 2014, 127: 190-195.
[33]
Wollensak G, Iomdina E, Dittert DD, et al. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA[J]. Acta Ophthalmol Scand, 2005, 83(4): 477-482.
[34]
Jung GB, Lee HJ, Kim JH, et al. Effect of cross-linking with riboflavin and ultraviolet A on the chemical bonds and ultrastructure of human sclera[J]. J Biomed Opt, 2011, 16(12): 125004.
[35]
Choi S, Lee SC, Lee HJ, et al. Structural response of human corneal and scleral tissues to collagen cross-linking treatment with riboflavin and ultraviolet A light[J]. Lasers Med Sci, 2013, 28(5): 1289-1296.
[36]
Zhang M, Zou Y, Zhang F, et al. Efficacy of Blue-Light Cross-linking on Human Scleral Reinforcement[J]. Optom Vis Sci, 2015, 92(8): 873-878.
[37]
Li Y, Liu C, Sun M, et al. Ocular safety evaluation of blue light scleral cross-linking in vivo in rhesus macaques[J]. Graefes Arch Clin Exp Ophthalmol, 2019, 257(7): 1435-1442.
[38]
Wang M, Zhang F, Liu K, et al. Safety evaluation of rabbit eyes on scleral collagen cross-linking by riboflavin and ultraviolet A[J]. Clin Exp Ophthalmol, 2015, 43(2): 156-163.
[39]
Lv Y, Zhou H, Xia W, et al. Effect of ultraviolet A (UVA) plus riboflavin induced collagen cross-linking on biomechanical properties of the sclera in guinea pigs[J]. Acta Lab Anim Sci Sin, 2012, 20: 44-47.
[40]
Gawargious BA, Le A, Lesgart M, et al. Differential Regional Stiffening of Sclera by Collagen Cross linking[J]. Curr Eye Res, 2020, 45(6): 718-725.
[41]
Sun M, Zhang F, Li Y, et al. Evaluation of the Safety and Long-term Scleral Biomechanical Stability of UVA Cross-linking on Scleral Collagen in Rhesus Monkeys[J]. J Refract Surg, 2020, 36(10): 696-702.
[42]
Gawargious BA, Le A, Lesgart M, et al. Differential Regional Stiffening of Sclera by Collagen Cross linking[J]. Curr Eye Res, 2020, 45(6): 718-725.
[43]
Karl A, Makarov FN, Koch C, et al. The ultrastructure of rabbit sclera after scleral crosslinking with riboflavin and blue light of different intensities[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(8): 1567-1577.
[44]
Kwok SJJ, Kim M, Lin HH, et al. Flexible Optical Waveguides for Uniform Periscleral Cross Linking[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2596-2602.
[45]
Xiao B, Chu Y, Wang H, et al. Minimally Invasive Repetitive UVA Irradiation along with Riboflavin Treatment Increased the Strength of Sclera Collagen Cross-Linking[J]. J Ophthalmol, 2017: 1324012.
[46]
Kwok SJJ, Forward S, Wertheimer CM, et al. Selective Equatorial Sclera Crosslinking in the Orbit Using a Metal-Coated Polymer Waveguide[J]. Invest Ophthalmol Vis Sci, 2019, 60(7): 2563-2570.
[47]
Rong S, Wang C, Han B, et al. Iontophoresis-assisted accelerated riboflavin/ultraviolet A scleral cross-linking: A potential treatment for pathologic myopia[J]. Exp Eye Res, 2017, 162: 37-47.
[48]
Li X, Wu M, Zhang L, et al. Riboflavin and ultraviolet A irradiation for the prevention of progressive myopia in a guinea pig model[J]. Exp Eye Res, 2017, 165:1-6.
[49]
Levy AM, Fazio MA, Grytz R. Experimental myopia increases and scleral crosslinking using genipin inhibits cyclic softening in the tree shrew sclera[J]. Ophthalmic Physiol Opt, 2018, 38(3): 246-256.
[50]
Metzler KM, Roberts CJ, Mahmoud AM, et al. Ex Vivo Transepithelial Collagen Cross-linking in Porcine and Human Corneas Using Human Decorin Core Protein[J]. J Refract Surg, 2016, 32(6): 410-417.
[51]
Kimball EC, Nguyen C, Steinhart MR, et al, Pease ME, Oglesby EN, et al. Experimental scleral cross-linking increases glaucoma damage in a mouse model[J]. Exp Eye Res, 2014, 128: 129-140.
[52]
Lin X, Naidu RK, Dai J, et al. Scleral Cross-Linking Using Glyceraldehyde for the Prevention of Axial Elongation in the Rabbit: Blocked Axial Elongation and Altered Scleral Microstructure[J]. Curr Eye Res, 2019, 44(2): 162-171.
[53]
Xue A, Zheng L, Tan G, et al. Genipin-Crosslinked Donor Sclera for Posterior Scleral Contraction/Reinforcement to Fight Progressive Myopia[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3564-3573.
[54]
Gupta P, Yadav KS. Applications of microneedles in delivering drugs for various ocular diseases[J]. Life Sci, 2019, 237: 116907.
[55]
Zhou C, Robert MC, Kapoulea V, et al. Sustained Subconjunctival Delivery of Infliximab Protects the Cornea and Retina Following Alkali Burn to the Eye[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 96-105.
[56]
Perez VL, Wirostko B, Korenfeld M, et al. Ophthalmic Drug Delivery Using Iontophoresis: Recent Clinical Applications[J]. J Ocul Pharmacol Ther, 2020, 36(2): 75-87.
[1] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[2] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[3] 崔梦凡, 贺瑞, 李晓娜, 陈维毅, 宋耀文. 角膜生物力学评估参数的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 236-240.
[4] 江卓婷, 高妍, 李春晖. 相干光断层扫描在角膜屈光手术术前筛查中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 247-251.
[5] 娜荷雅, 朱丹. 红光疗法在儿童近视眼防控中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 252-256.
[6] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[7] 任美琪, 李俊红, 冯张青. 间歇性外斜视新型热点问题的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 162-166.
[8] 陈灏楠, 肖伟. 透明角膜切口对白内障术后角膜散光的影响及其精准测量的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 172-176.
[9] 赵艳, 朱丹. 低浓度阿托品在儿童近视眼防控中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 124-128.
[10] 宋红欣, 孙璐, 王庆强. 近视性屈光参差少年儿童眼部屈光生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 88-93.
[11] 郝壮, 马济远, 何梦梅, 李兴育, 陆新婷, 武静, 周健. 迟发性囊袋阻滞综合征临床特征、治疗方法及其疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 70-75.
[12] 宗晨曦, 肖林, 宋红欣. 人工智能视力筛查在近视眼防控中的应用研究与展望[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 60-64.
[13] 陈乐然, 袁翌斐, 陈跃国. 儿童圆锥角膜发病机制与角膜胶原交联术适应证及治疗研究的新进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 50-54.
[14] 王姮, 张瑞恒, 刘月明, 魏文斌. 巩膜外敷贴放射后补充经瞳孔温热疗法治疗脉络膜黑色素瘤的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 18-23.
[15] 刘天龙. 改良型超声乳化手术治疗高度近视合并白内障疗效观察[J]. 中华老年病研究电子杂志, 2023, 10(01): 30-33.
阅读次数
全文


摘要