[1] |
Kumar A, Chawla R, Kumawat D, et al. Insight into high myopia and the macula[J]. Indian J Ophthalmol, 2017, 65(2): 85-91.
|
[2] |
Chan NS, Teo K, Cheung CM. Epidemiology and Diagnosis of Myopic Choroidal Neovascularization in Asia[J]. Eye Contact Lens, 2016, 42(1): 48-55.
|
[3] |
Wenbo L, Congxia B, Hui L. Genetic and environmental-genetic interaction rules for the myopia based on a family exposed to risk from a myopic environment[J]. Gene, 2017, 626: 305-308.
|
[4] |
Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus[J]. Am J Ophthalmol, 2003, 135(5): 620-627.
|
[5] |
Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles[J]. Ocul Surf., 2013, 11(2): 65-74.
|
[6] |
Seiler TG, Komninou MA, Nambiar MH, et al. Oxygen Kinetics During Corneal Cross-linking With and Without Supplementary Oxygen[J]. Am J Ophthalmol, 2021, 223: 368-376.
|
[7] |
Huang R, Choe E, Min DB. Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction between riboflavin and singlet oxygen[J]. J Food Sci, 2004, 69: 726-732.
|
[8] |
Kamaev P, Friedman MD, Sherr E, et al. Photochemical kinetics of corneal cross-linking with riboflavin[J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 2360-2367.
|
[9] |
Cifariello F, Minicucci M, Di Renzo F, et al. Epi-Off versus Epi-On Corneal Collagen Cross-Linking in Keratoconus Patients: A Comparative Study through 2-Year Follow-Up[J]. J Ophthalmol, 2018: 4947983.
|
[10] |
Abdel-Radi M, Eldaly Z, Abdelmotaal H, et al. Correlation between corneal demarcation line depth in epithelium-off and trans-epithelium accelerated corneal cross linking and keratoconus progression[J]. Int J Ophthalmol, 2020, 13(6): 907-912.
|
[11] |
Bradford S, Mikula E, Xie Y, et al. Enhanced Transepithelial Riboflavin Delivery Using Femtosecond Laser-Machined Epithelial Microchannels[J]. Transl Vis Sci Technol, 2020, 9(6): 1.
|
[12] |
Hayes S, Morgan SR, O'Brart DP, et al. A study of stromal riboflavin absorption in ex vivo porcine corneas using new and existing delivery protocols for corneal cross-linking[J]. Acta Ophthalmol, 2016, 94(2): e109-e117.
|
[13] |
Aldahlawi NH, Hayes S, O'Brart DPS, et al. An investigation into corneal enzymatic resistance following epithelium-off and epithelium-on corneal cross-linking protocols[J]. Exp Eye Res, 2016, 153: 141-151.
|
[14] |
Rong S, Wang C, Han B, et al. Iontophoresis-assisted accelerated riboflavin/ultraviolet A scleral cross-linking: A potential treatment for pathologic myopia[J]. Exp Eye Res, 2017, 162: 37-47.
|
[15] |
Cassagne M, Laurent C, Rodrigues M, et al. Iontophoresis Transcorneal Delivery Technique for Transepithelial Corneal Collagen Crosslinking With Riboflavin in a Rabbit Model[J]. Invest Ophthalmol Vis Sci, 2016, 57(2): 594-603.
|
[16] |
Vinciguerra P, Mencucci R, Romano V, et al. Imaging mass spectrometry by matrix assisted laser desorption/ionization and stress-strain measurements in iontophoresis transepithelial corneal collagen cross-linking[J]. Biomed Res Int, 2014: 404587.
|
[17] |
Caruso C, Ostacolo C, Epstein RL, et al. Transepithelial Corneal Cross-Linking With Vitamin E-Enhanced Riboflavin Solution and Abbreviated, Low-Dose UV-A: 24-Month Clinical Outcomes[J]. Cornea, 2016, 35(2): 145-150.
|
[18] |
Wollensak G, Iomdina E. Long-term biomechanical properties after collagen crosslinking of sclera using glyceraldehyde[J]. Acta Ophthalmol, 2008, 86(8): 887-893.
|
[19] |
Liu TX, Luo X, Gu YW, et al. Correlation of discoloration and biomechanical properties in porcine sclera induced by genipin[J]. Int J Ophthalmol, 2014, 7(4): 621-625.
|
[20] |
Wong FF, Lari DR, Schultz DS, et al. Whole globe inflation testing of exogenously crosslinked sclera using genipin and methylglyoxal[J]. Exp Eye Res, 2012, 103: 17-21.
|
[21] |
Babar N, Kim M, Cao K, et al. Cosmetic preservatives as therapeutic corneal and scleral tissue cross-linking agents[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 1274-1282.
|
[22] |
Kobashi H, Rong SS. Corneal Collagen Cross-Linking for Keratoconus: Systematic Review[J]. Biomed Res Int, 2017: 8145651.
|
[23] |
Hersh PS, Stulting RD, Muller D, et al. U.S. Multicenter Clinical Trial of Corneal Collagen Crosslinking for Treatment of Corneal Ectasia after Refractive Surgery[J]. Ophthalmology, 2017, 124(10): 1475-1484.
|
[24] |
Lim EWL, Lim L. Review of Laser Vision Correction (LASIK, PRK and SMILE) with Simultaneous Accelerated Corneal Crosslinking-Long-term Results[J]. Curr Eye Res, 2019, 44(11): 1171-1180.
|
[25] |
Seven I, Sinha Roy A, Dupps WJ, et al. Patterned corneal collagen crosslinking for astigmatism: computational modeling study[J]. J Cataract Refract Surg, 2014, 40(6): 943-953.
|
[26] |
Bettis DI, Hsu M, Moshirfar M. Corneal collagen cross-linking for nonectatic disorders: a systematic review[J]. J Refract Surg, 2012, 28(11): 798-807.
|
[27] |
Ting DSJ, Henein C, Said DG, et al. Photoactivated chromophore for infectious keratitis - Corneal cross-linking (PACK-CXL): A systematic review and meta-analysis[J]. Ocul Surf, 2019, 17(4): 624-634.
|
[28] |
Downs JC, Roberts MD, Burgoyne CF. Mechanical environment of the optic nerve head in glaucoma[J]. Optom Vis Sci, 2008, 85(6): 425-435.
|
[29] |
Thornton IL, Dupps WJ, Sinha RA, et al. Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking[J]. Invest Ophthalmol Vis Sci, 2009, 50(3): 122733.
|
[30] |
Korneva A, Nguyen C, Schaub J, et al. Biomechanical effects on the mouse optic nerve head in experimental scleral crosslinking in glaucoma[J]. Invest Ophthalmol Vis Sci, 2019, 60(9): 6188.
|
[31] |
Wollensak G, Spoerl E. Collagen crosslinking of human and porcine sclera[J]. J Cataract Refract Surg, 2004, 30(3): 689-695.
|
[32] |
Dotan A, Kremer I, Livnat T, et al. Scleral cross-linking using riboflavin and ultraviolet-a radiation for prevention of progressive myopia in a rabbit model[J]. Exp Eye Res, 2014, 127: 190-195.
|
[33] |
Wollensak G, Iomdina E, Dittert DD, et al. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA[J]. Acta Ophthalmol Scand, 2005, 83(4): 477-482.
|
[34] |
Jung GB, Lee HJ, Kim JH, et al. Effect of cross-linking with riboflavin and ultraviolet A on the chemical bonds and ultrastructure of human sclera[J]. J Biomed Opt, 2011, 16(12): 125004.
|
[35] |
Choi S, Lee SC, Lee HJ, et al. Structural response of human corneal and scleral tissues to collagen cross-linking treatment with riboflavin and ultraviolet A light[J]. Lasers Med Sci, 2013, 28(5): 1289-1296.
|
[36] |
Zhang M, Zou Y, Zhang F, et al. Efficacy of Blue-Light Cross-linking on Human Scleral Reinforcement[J]. Optom Vis Sci, 2015, 92(8): 873-878.
|
[37] |
Li Y, Liu C, Sun M, et al. Ocular safety evaluation of blue light scleral cross-linking in vivo in rhesus macaques[J]. Graefes Arch Clin Exp Ophthalmol, 2019, 257(7): 1435-1442.
|
[38] |
Wang M, Zhang F, Liu K, et al. Safety evaluation of rabbit eyes on scleral collagen cross-linking by riboflavin and ultraviolet A[J]. Clin Exp Ophthalmol, 2015, 43(2): 156-163.
|
[39] |
Lv Y, Zhou H, Xia W, et al. Effect of ultraviolet A (UVA) plus riboflavin induced collagen cross-linking on biomechanical properties of the sclera in guinea pigs[J]. Acta Lab Anim Sci Sin, 2012, 20: 44-47.
|
[40] |
Gawargious BA, Le A, Lesgart M, et al. Differential Regional Stiffening of Sclera by Collagen Cross linking[J]. Curr Eye Res, 2020, 45(6): 718-725.
|
[41] |
Sun M, Zhang F, Li Y, et al. Evaluation of the Safety and Long-term Scleral Biomechanical Stability of UVA Cross-linking on Scleral Collagen in Rhesus Monkeys[J]. J Refract Surg, 2020, 36(10): 696-702.
|
[42] |
Gawargious BA, Le A, Lesgart M, et al. Differential Regional Stiffening of Sclera by Collagen Cross linking[J]. Curr Eye Res, 2020, 45(6): 718-725.
|
[43] |
Karl A, Makarov FN, Koch C, et al. The ultrastructure of rabbit sclera after scleral crosslinking with riboflavin and blue light of different intensities[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(8): 1567-1577.
|
[44] |
Kwok SJJ, Kim M, Lin HH, et al. Flexible Optical Waveguides for Uniform Periscleral Cross Linking[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2596-2602.
|
[45] |
Xiao B, Chu Y, Wang H, et al. Minimally Invasive Repetitive UVA Irradiation along with Riboflavin Treatment Increased the Strength of Sclera Collagen Cross-Linking[J]. J Ophthalmol, 2017: 1324012.
|
[46] |
Kwok SJJ, Forward S, Wertheimer CM, et al. Selective Equatorial Sclera Crosslinking in the Orbit Using a Metal-Coated Polymer Waveguide[J]. Invest Ophthalmol Vis Sci, 2019, 60(7): 2563-2570.
|
[47] |
Rong S, Wang C, Han B, et al. Iontophoresis-assisted accelerated riboflavin/ultraviolet A scleral cross-linking: A potential treatment for pathologic myopia[J]. Exp Eye Res, 2017, 162: 37-47.
|
[48] |
Li X, Wu M, Zhang L, et al. Riboflavin and ultraviolet A irradiation for the prevention of progressive myopia in a guinea pig model[J]. Exp Eye Res, 2017, 165:1-6.
|
[49] |
Levy AM, Fazio MA, Grytz R. Experimental myopia increases and scleral crosslinking using genipin inhibits cyclic softening in the tree shrew sclera[J]. Ophthalmic Physiol Opt, 2018, 38(3): 246-256.
|
[50] |
Metzler KM, Roberts CJ, Mahmoud AM, et al. Ex Vivo Transepithelial Collagen Cross-linking in Porcine and Human Corneas Using Human Decorin Core Protein[J]. J Refract Surg, 2016, 32(6): 410-417.
|
[51] |
Kimball EC, Nguyen C, Steinhart MR, et al, Pease ME, Oglesby EN, et al. Experimental scleral cross-linking increases glaucoma damage in a mouse model[J]. Exp Eye Res, 2014, 128: 129-140.
|
[52] |
Lin X, Naidu RK, Dai J, et al. Scleral Cross-Linking Using Glyceraldehyde for the Prevention of Axial Elongation in the Rabbit: Blocked Axial Elongation and Altered Scleral Microstructure[J]. Curr Eye Res, 2019, 44(2): 162-171.
|
[53] |
Xue A, Zheng L, Tan G, et al. Genipin-Crosslinked Donor Sclera for Posterior Scleral Contraction/Reinforcement to Fight Progressive Myopia[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3564-3573.
|
[54] |
Gupta P, Yadav KS. Applications of microneedles in delivering drugs for various ocular diseases[J]. Life Sci, 2019, 237: 116907.
|
[55] |
Zhou C, Robert MC, Kapoulea V, et al. Sustained Subconjunctival Delivery of Infliximab Protects the Cornea and Retina Following Alkali Burn to the Eye[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 96-105.
|
[56] |
Perez VL, Wirostko B, Korenfeld M, et al. Ophthalmic Drug Delivery Using Iontophoresis: Recent Clinical Applications[J]. J Ocul Pharmacol Ther, 2020, 36(2): 75-87.
|