切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2024, Vol. 14 ›› Issue (01) : 26 -33. doi: 10.3877/cma.j.issn.2095-2007.2024.01.005

论著

高度近视眼视网膜各分层厚度改变及其相关因素的临床研究
马张芳1, 宋薇1, 王亚星1,()   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 眼科学与视觉科学北京市重点实验室
  • 收稿日期:2024-02-04 出版日期:2024-02-28
  • 通信作者: 王亚星
  • 基金资助:
    国家自然科学基金项目(82271086)

The retinal thickness changes and their associated factors in highly myopic eyes

Zhangfang Ma1, Wei Song1, Yaxing Wang1,()   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing 100730, China
  • Received:2024-02-04 Published:2024-02-28
  • Corresponding author: Yaxing Wang
引用本文:

马张芳, 宋薇, 王亚星. 高度近视眼视网膜各分层厚度改变及其相关因素的临床研究[J]. 中华眼科医学杂志(电子版), 2024, 14(01): 26-33.

Zhangfang Ma, Wei Song, Yaxing Wang. The retinal thickness changes and their associated factors in highly myopic eyes[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(01): 26-33.

目的

探讨高度近视眼患者视网膜各分层厚度改变及其相关因素。

方法

收集2023年2月至2023年7月就诊于首都医科大学附属北京同仁医院眼科中心的高度近视眼患者128例(128只眼)进行研究。其中,男性46例(46只眼),女性82例(82只眼),年龄21~69岁,平均(35.9±7.9)岁。分别按眼轴长度(AL)、年龄及性别进行分组。记录患者的血压、近视初始年龄、眼压、身高及体重并计算身高体重指数(BMI)。应用相干光断层扫描仪(OCT)测量视网膜各层厚度及中心凹下脉络膜厚度(SFCT)。视网膜各层厚度的测量数据经Kolmogorov-Smirnova正态性检验符合正态分布,以±s进行描述。不同AL组间和不同年龄组间患者视网膜各层厚度的比较采用方差分析;当差异具有统计学意义时,采用Bonferroni法进一步两两比较。不同性别组间患者视网膜各层厚度的比较采用独立样本t检验。采用单因素线性回归筛选视网膜各层厚度的相关因素。然后,将各层视网膜厚度分别作为因变量,将单因素分析中P≤0.10的因素作为自变量,并参照既往的研究结果将年龄和AL亦作为自变量进行多元线性回归分析其相关性。

结果

本研究检测患者视网膜全层、视网膜神经纤维层(RNFL)、节细胞层(GCL)、内丛状层(IPL)、内核层(INL)、外丛状层(OPL)、外核层(ONL)、视网膜色素上皮层(RPE)、视网膜内层(IRL)及视网膜外层(ORL)的厚度,AL<26.5 mm组分别为(258.9±20.0)μm、(10.1±2.9)μm、(13.1±5.0)μm、(18.5±4.0)μm、(15.4±4.4)μm、(24.8±5.5)μm、(87.6±9.4)μm、(17.2±1.7)μm、(169.2±20.1)μm及(89.7±3.5)μm;26.5 mm≤AL<27.5 mm组分别为(266.6±26.1)μm、(10.8±2.9)μm、(15.2±8.6)μm、(19.6±5.3)μm、(17.7±5.4)μm、(26.2±6.8)μm、(87.5±12.2)μm、(17.1±2.4)μm、(176.5±27.6)μm及(90.1±4.5)μm;AL≥27.5 mm组分别为(271.0±24.1)μm、(11.6±2.8)μm、(17.3±7.6)μm、(21.3±5.1)μm、(18.9±5.8)μm、(28.4±7.3)μm、(86.5±9.3)μm、(16.7±2.5)μm、(184.2±23.6)μm及(86.9±4.5)μm。年龄≤30岁组分别为(263.3±23.0)μm、(10.8±3.2)μm、(14.7±7.6)μm、(19.5±5.1)μm、(17.0±4.2)μm、(26.0±4.1)μm、(86.7±9.7)μm、(17.0±1.9)μm、(173.9±22.8)μm及(89.5±3.5)μm;31~39岁组分别为(263.8±26.1)μm、(10.7±3.1)μm、(15.2±7.3)μm、(19.7±5.0)μm、(17.0±5.4)μm、(25.5±6.1)μm、(87.0±11.8)μm、(17.1±2.1)μm、(174.8±26.8)μm及(89.1±4.3)μm;年龄≥40岁组分别为(272.0±21.4)μm、(11.3±2.3)μm、(16.0±8.4)μm、(20.3±5.2)μm、(18.8±6.2)μm、(28.7±9.0)μm、(87.9±9.3)μm、(16.8±2.7)μm、(183.4±23.2)μm及(88.5±5.4)μm。男性组分别为(277.7±22.1)μm、(11.8±2.4)μm、(16.9±6.3)μm、(21.3±4.3)μm、(19.3±5.3)μm、(27.9±7.7)μm、(91.4±11.5)μm、(17.1±2.1)μm、(188.7±22.3)μm及(89.0±3.7)μm;女性组分别为(259.3±23.0)μm、(10.4±3.0)μm、(14.4±8.2)μm、(19.0±5.2)μm、(16.5±5.2)μm、(25.7±6.0)μm、(84.8±9.4)μm、(17.0±2.3)μm、(170.4±24.3)μm及(89.0±4.8)μm。AL<26.5 mm组、26.5 mm≤AL<27.5 mm及AL≥27.5 mm组患者AL越长其IPL、INL、IRL及ORL的厚度均越厚,其差异具有统计学意义(F=3.09,4.06,3.37,6.97;P<0.05)。进一步两两比较发现,AL≥27.5 mm组比AL<26.5 mm组患者IPL、INL和IRL的厚度更厚,其差异具有统计学意义(t=2.58,2.87,2.90;P<0.05)。AL≥27.5 mm组比AL<26.5 mm组、AL≥27.5 mm组比26.5≤AL<27.5组患者ORL的厚度更薄,其差异具有统计学意义(t=2.94,3.30;P<0.05)。而各不同AL组患者的视网膜全层厚度、RNFL、GCL、OPL、ONL及RPE厚度的差异均无统计学意义(F=2.33,2.60,2.88,2.76,0.13,0.46;P>0.05)。年龄≤30岁组、30~39岁组及年龄≥40岁组患者视网膜全层厚度、RNLF、GCL、IPL、INL、OPL、ONL、RPE、IRL及ORL厚度的差异均无统计学意义(F=1.54,0.63,0.26,0.22,1.50,2.68,0.11,0.24,1.62,0.45;P>0.05)。女性组患者比男性组患者视网膜全层、RNFL、IPL、INL、ONL及IRL的厚度均更薄,其差异具有统计学意义(t=4.44,2.97,2.66,2.88,3.28,4.32;P<0.05)。采用单因素线性回归筛选视网膜各层厚度的相关因素有患者的年龄、性别、收缩压、舒张压、BMI、近视初始年龄、眼压、AL及SFCT。最终多因素回归分析发现,视网膜全层、RNFL、INL、ONL及IRL的厚度男性组较女性组更厚,其相关性具有统计学意义(β=-15.40,-1.27,-2.57,-6.16,-16.77;P<0.05)。视网膜全层及IPL厚度随收缩压升高而升高,其相关性具有统计学意义(β=0.29,0.06;P<0.05)。ORL厚度随舒张压升高而变薄,其相关性具有统计学意义(β=-0.09,P<0.05)。RNFL、GCL、IPL、INL、OPL和IRL的厚度随AL增长而越厚,其相关性具有统计学意义(β=0.49,1.55,0.80,0.88,1.21,4.13;P<0.05)。

结论

高度近视眼患者部分视网膜层次的厚度与性别、收缩压、舒张压及AL相关。

Objective

To explore the changes in retinal layer thickness and related factors in high myopia eyes.

Methods

A total of 128 highly myopic patients (128 eyes) who visited the Beijing Tongren Eye Center of Beijing Tongren Hospital affiliated with Capital Medical University from February 2023 to July 2023. Among them, there were 46 males (46 eyes) and 82 females (82 eyes) with an average age of (35.9±7.9) years (ranging from 21 to 69 years). According to axial length (AL), age, and gender, they were divided. The patient′s blood pressure, initial age of myopia, intraocular pressure, height and weight were recorded, and the height and body mass index (BMI) was calculated. The thickness of each layer of the retina and the thickness of the central fovea choroid was measured using coherent light tomography (OCT). The measurement data of the thickness of each layer of the retina conformed to a normal distribution through Kolmogorov-Smirnova normality test, and was described as ±s, and compared by analysis of variance in retinal thickness between different AL and age groups and used for further pairwise by Bonferroni if there was a statistically significant difference. The retinal thickness between different gender groups was compared by independent sample t test. Single factor linear regression was used to screen for factors related to the thickness of each layer of the retina. Then, the thickness of each layer of the retina was used as the dependent variable, and the factor with P ≤ 0.10 in the univariate analysis was used as the independent variable. Referring to previous results, age and AL were also used as independent variables for multiple linear regression analysis of their correlation.

Results

The thickness of the entire retina, retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigment epithelium layer (RPE), inner retinal layer (IRL), and outer retinal layer (ORL) in patients were measured. The AL<26.5 mm group was (258.9±20.0)μm, (10.1±2.9) μm, (13.1±5.0) μm, (18.5±4.0) μm, (15.4±4.4) μm, (24.8±5.5) μm, (87.6±9.4) μm, (17.2±1.7) μm, (169.2±20.1) μm and (89.7±3.5) μm, respectively. The groups with 26.5 mm ≤AL<27.5 mm were (266.6±26.1) μm, (10.8±2.9) μm, (15.2±8.6) μm, (19.6±5.3) μm, (17.7±5.4) μm, (26.2±6.8) μm, (87.5±12.2) μm, (17.1±2.4) μm, (176.5±27.6) μm and (90.1±4.5) μm, respectively. The AL≥27.5 mm groups were (271.0±24.1) μm, (11.6±2.8) μm, (17.3±7.6) μm, (21.3±5.1) μm, (18.9±5.8) μm, (28.4±7.3) μm, (86.5±9.3) μm, (16.7±2.5) μm, (184.2±23.6) μm and (86.9±4.5) μm, respectively. The age groups ≤ 30 years old were (263.3±23.0)μm, (10.8±3.2) μm, (14.7±7.6) μm, (19.5±5.1) μm, (17.0±4.2) μm, (26.0±4.1) μm, (86.7±9.7) μm, (17.0±1.9) μm, (173.9±22.8) μm and (89.5±3.5) μm, respectively. The age group of 31 to 39 years old was (263.8±26.1)μm, (10.7±3.1) μm, (15.2±7.3) μm, (19.7±5.0) μm, (17.0±5.4) μm, (25.5±6.1) μm, (87.0±11.8) μm, (17.1±2.1) μm, (174.8±26.8) μm and (89.1±4.3) μm, respectively. The age group ≥40 years old was (272.0±21.4)μm, (11.3±2.3) μm, (16.0±8.4) μm, (20.3±5.2) μm, (18.8±6.2) μm, (28.7±9.0) μm, (87.9±9.3) μm, (16.8±2.7) μm, (183.4±23.2) μm and (88.5±5.4) μm, respectively. The male groups were (277.7±22.1) μm, (11.8±2.4) μm, (16.9±6.3) μm, (21.3±4.3) μm, (19.3±5.3) μm, (27.9±7.7) μm, (91.4±11.5) μm, (17.1±2.1) μm, (188.7±22.3) μm and (89.0±3.7) μm, respectively. The female groups were (259.3±23.0) μm, (10.4±3.0) μm, (14.4±8.2) μm, (19.0±5.2) μm, (16.5±5.2) μm, (25.7±6.0) μm, (84.8±9.4) μm, (17.0±2.3) μm, (170.4±24.3) μm and (89.0±4.8) μm, respectively. The longer the AL, the thicker the thickness of IPL, INL, IRL, and ORL in the AL<26.5 mm group, 26.5 mm ≤AL<27.5 mm, and AL≥27.5 mm group, and the differences were statistically significant (F=3.09, 4.06, 3.37, 6.97; P<0.05). Further pairwise comparison revealed that patients with AL≥27.5 mm had thicker IPL, INL, and IRL compared to those with AL<26.5 mm, and the differences were statistically significant (t=2.58, 2.87, 2.90; P<0.05). The thickness of ORL in the AL≥27.5 mm group was thinner than that in the AL<26.5 mm group, and the AL≥27.5 mm group was thinner than that in the 26.5≤AL<27.5 group, with statistical significance (t=2.94, 3.30; P<0.05). However, there were no statistically significant differences in the retinal full thickness, RNFL, GCL, OPL, ONL, and RPE thickness among patients in different AL groups (F=2.33, 2.60, 2.88, 2.76, 0.13, 0.46; P>0.05). There were no statistically significant differences in the thickness of the entire retinal layer, RNLF, GCL, IPL, INL, OPL, ONL, RPE, IRL, and ORL among patients aged ≤30 years, 30-39 years, and ≥40 years (F=1.54, 0.63, 0.26, 0.22, 1.50, 2.68, 0.11, 0.24, 1.62, 0.45; P>0.05). The thickness of the entire retina, RNFL, IPL, INL, ONL, and IRL in the female group was thinner than that in the male group, and the differences were statistically significant (t=4.44, 2.97, 2.66, 2.88, 3.28, 4.32; P<0.05). Single factor linear regression was used to screen for factors related to the thickness of each layer of the retina, including patient′s age, gender, systolic and diastolic blood pressure, BMI, initial age of myopia, intraocular pressure, AL, and SFCT. The final multiple regression analysis found that the thickness of the full retinal layer, RNFL, INL, ONL, and IRL in the male group was thicker than that in the female group, and the correlation was statistically significant (β=- 15.40, -1.27, -2.57, -6.16, -16.77; P<0.05). The thickness of the entire retinal layer and IPL increases with increasing systolic blood pressure, and their correlation was statistically significant (β= 0.29, 0.06; P<0.05). The thickness of ORL decreases with increasing diastolic blood pressure, and its correlation was statistically significant (β=- 0.09, P<0.05). The thickness of RNFL, GCL, IPL, INL, OPL, and IRL increases with AL, and their correlation was statistically significant (β=0.49, 1.55, 0.80, 0.88, 1.21, 4.13; P<0.05).

Conclusions

The thickness of some retinal layers in patients with high myopia is related to gender, systolic blood pressure, diastolic blood pressure, and AL.

图1 相干光断层扫描视网膜各层成像并进行自动分层测量
表1 不同眼轴长度组患者的各层视网膜厚度的分布情况描述及各组间厚度的比较(μm)
表2 不同年龄组患者各层视网膜厚度及各组间的比较(μm)
表3 不同性别患者的各层视网膜厚度及各组间的比较(μm)
表4 视网膜厚度与眼部因素及全身因素单因素线性回归分析的结果
相关因素 统计值 视网膜全层厚度 RNFL GCL IPL INL OPL ONL RPE IRL ORL
年龄                      
  回归系数 0.40 0.30 0.08 0.04 0.11 0.07 0.09 0.008 0.43 -0.04
  P >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10
性别                      
  回归系数 -18.36 -1.45 -2.53 -2.28 -2.81 -2.15 -6.51 -0.14 -18.31 0.003
  P <0.10 <0.10 >0.10 <0.10 <0.10 >0.10 <0.10 >0.10 <0.10 >0.10
收缩压                      
  回归系数 0.45 0.04 0.10 0.073 0.05 0.06 0.13 -0.008 0.48 -0.04
  P <0.10 <0.10 <0.10 <0.10 >0.10 >0.10 <0.10 >0.10 <0.10 >0.10
舒张压                      
  回归系数 0.55 0.05 0.13 0.09 0.11 0.09 0.12 -0.02 0.61 -0.07
  P <0.10 <0.10 <0.10 <0.10 <0.10 >0.10 >0.10 >0.10 <0.10 >0.10
BMI                      
  回归系数 1.57 0.15 0.29 0.25 0.24 0.22 0.32 -0.001 1.49 0.05
  P <0.10 <0.10 >0.10 <0.10 >0.10 >0.10 >0.10 >0.10 <0.10 >0.10
近视初始年龄                      
  回归系数 -0.44 -0.05 -0.15 -0.11 -0.01 -0.12 -0.06 0.08 -0.54 0.09
  P >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10
眼压                      
  回归系数 -0.09 0.007 -0.13 -0.12 0.01 0.002 0.22 0.04 -0.07 -0.04
  P >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10
AL                      
  回归系数 4.14 0.58 1.55 0.98 1.02 1.21 -0.44 -0.22 5.28 -1.09
  P <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 >0.10 >0.10 <0.10 <0.10
SFCT                      
  回归系数 0.04 0.003 -0.004 0.01 -0.002 0.01 0.03 0.002 0.02 0.02
  P >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 <0.10 >0.10 >0.10 <0.10
表5 视网膜厚度与眼部因素及全身因素多元线性回归分析的结果
[1]
陈禹橦,刘贤洁,刘美丹,等. 利用频域光学相干断层扫描分析高度近视患者黄斑区视网膜外核层厚度[J]. 中国医科大学学报201847(3):198-201.
[2]
Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina [J]. Arch Ophthalmol, 1995, 113 (3): 325-332.
[3]
Drexler W, Morgner U, Ghanta RK, et al. Ultrahigh-resolution ophthalmic optical coherence tomography [J]. Nat Med, 2001, 7 (4): 502-507.
[4]
Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography [J]. Arch Ophthalmol, 1995, 113(5): 586-596.
[5]
Leung CK, Cheung CY, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study [J]. Ophthalmology, 2009, 116 (7): 1257-1263.
[6]
Tan O, Li G, Lu AT, et al. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis [J]. Ophthalmology, 2008, 115 (6): 949-956.
[7]
Tan O, Chopra V, Lu AT, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography [J]. Ophthalmology, 2009, 116 (12): 2305-2314.
[8]
Ishikawa H, Stein DM, Wollstein G, et al. Macular segmentation with optical coherence tomography [J]. Invest Ophthalmol Vis Sci, 2005, 46 (6): 2012-2017.
[9]
Garvin MK, Abramoff MD, Kardon R, et al. Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search [J]. IEEE Trans Med Imaging, 2008, 27 (10): 1495-1505.
[10]
Yang Q, Reisman CA, Wang Z, et al. Automated layer segmentation of macular OCT images using dual-scale gradient information [J]. Opt Express, 2010, 18 (20): 21293-21307.
[11]
Bagci AM, Shahidi M, Ansari R, et al. Thickness profiles of retinal layers by optical coherence tomography image segmentation [J]. Am J Ophthalmol, 2008, 146 (5): 679-687.
[12]
Loduca AL, Zhang C, Zelkha R, et al. Thickness mapping of retinal layers by spectral-domain optical coherence tomography [J]. Am J Ophthalmol, 2010, 150 (6): 849-855.
[13]
Ooto S, Hangai M, Tomidokoro A, et al. Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures [J]. Invest Ophthalmol Vis Sci, 2011, 52 (12):8769-8779.
[14]
Park KA, Kim J, Oh SY. Analysis of spectral domain optical coherence tomography measurements in optic neuritis: differences in neuromyelitis optica, multiple sclerosis, isolated optic neuritis and normal healthy controls [J]. Acta Ophthalmol, 2014, 92(1): e57-e65.
[15]
Qian W, WenBin W, YaXing W, et al. Thickness of individual layers at the macula and associated factors: the Beijing Eye Study 2011 [J]. BMC Ophthalmol, 2020, 20 (1): 49.
[16]
Spraul CW, Lang GE, Grossniklaus HE, et al. Histologic and morphometric analysis of the choroid, Bruch's membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes [J]. Surv Ophthalmol, 1999, 44: S10-S32.
[17]
Wang Y, Jiang H, Shen M, et al. Quantitative analysis of the intraretinal layers and optic nerve head using ultra-high resolution optical coherence tomography [J]. J Biomed Opt, 2012, 17 (6): 066013.
[18]
Alamouti B, Funk J. Retinal thickness decreases with age: an OCT study [J]. Br J Ophthalmol, 2003, 87 (7): 899-901.
[19]
Jonas JB, Schmidt AM, Müller-Bergh JA, et al. Human optic nerve fiber count and optic disk size [J]. Invest Ophthalmol Vis Sci, 1992, 33 (6): 2012-2018.
[20]
Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal photoreceptor density decreases with age [J]. Ophthalmology, 1995, 102 (12): 1853-1859.
[21]
Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal pigment epithelium cell count, density and correlations in normal human eyes [J]. Am J Ophthalmol, 1996, 121 (2): 181-189.
[22]
Yaprak AC, Yaprak L. Retinal microvasculature and optic disc alterations in non-pathological high myopia with optical coherence tomography angiography [J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259 (11): 3221-3227.
[23]
张逸非,都婉红,赵梅生,等. OCTA检测高度近视患者视网膜脉络膜厚度及血流变化的研究进展 [J]. 国际眼科杂志202323(4):597-601.
[1] 江卓婷, 高妍, 李春晖. 相干光断层扫描在角膜屈光手术术前筛查中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 247-251.
[2] 郝壮, 马济远, 何梦梅, 李兴育, 陆新婷, 武静, 周健. 迟发性囊袋阻滞综合征临床特征、治疗方法及其疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 70-75.
[3] 张宁宁, 慕璟玉, 马晓玲, 李小龙, 王雁, 赵勇. 儿童青少年高度近视眼眼底特征的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 252-256.
[4] 黄瑶, 侯思梦, 魏文斌. 继发黄斑水肿的视网膜中央静脉阻塞患眼脉络膜厚度的变化及雷珠单抗治疗效果的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 134-139.
[5] 张珂, 刘武. 近视眼牵引性黄斑病变相关因素的研究现状[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 380-384.
[6] 姚沁楠, 万修华. 有晶状体眼后房型人工晶状体植入术与角膜屈光手术治疗高度近视眼有效性、安全性及可预测性的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 346-352.
[7] 何海龙, 刘振宇, 周春媛, 张立平, 王进达, 万修华. 飞秒激光小切口角膜基质透镜切除术与有晶状体眼后房型人工晶状体植入术矫正高度近视眼疗效的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 22-28.
[8] 赵鹏飞, 柳静, 徐雯, 胡雅斌, 翟长斌, 魏文斌. 术前应用人工泪液对FS-LASIK治疗高度近视眼术后干眼自觉症状和泪膜稳定性影响的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(06): 326-332.
[9] 吉祥, 张丁丁, 毛馨遥, 周仕萍, 刘慧. Wang-Koch优化眼轴SRK/T公式预测不同眼轴长度下高度近视眼合并白内障术后屈光度准确性的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(05): 281-287.
[10] 王凯悦, 张新媛, 聂瑶, 邱冰洁, 赵琳, 康文婷. 脂类代谢异常与糖尿病视网膜微血管病变及神经元退行性改变的相关性研究[J]. 中华眼科医学杂志(电子版), 2020, 10(04): 212-218.
[11] 杨宇, 姜惠, 范玮. 高度近视眼眼底血流动力学的研究进展[J]. 中华眼科医学杂志(电子版), 2020, 10(03): 183-187.
[12] 牛红蕾, 张东昌, 杨璐. 多模式眼底影像技术在高度近视眼检查中的应用进展[J]. 中华眼科医学杂志(电子版), 2020, 10(02): 123-128.
[13] 付庆东, 杨寅寅, 俞萍萍, 徐东, 孔祥筠, 刘继丽, 王露雯. Lenstar LS900光学生物测量与浸润式B型超声引导下的A型超声分段式生物测量法在高度近视眼眼轴测量中的一致性研究[J]. 中华眼科医学杂志(电子版), 2019, 09(06): 372-377.
[14] 刘骁, 刘娜, 李鉴达, 张旭, 尹文玲. 应用深度增强型成像技术研究早期年龄相关性黄斑变性患者黄斑区脉络膜厚度的变化[J]. 中华眼科医学杂志(电子版), 2019, 09(06): 360-365.
[15] 刘天龙. 改良型超声乳化手术治疗高度近视合并白内障疗效观察[J]. 中华老年病研究电子杂志, 2023, 10(01): 30-33.
阅读次数
全文


摘要