切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (02) : 94 -98. doi: 10.3877/cma.j.issn.2095-2007.2023.02.006

综述

非编码核糖核酸与白内障相关的研究进展
方蕊, 宋旭东()   
  1. 100730 首都医科大学附属北京同仁医院2021级科学型博士研究生
    100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 眼科学与视觉科学北京市重点实验室
  • 收稿日期:2022-09-01 出版日期:2023-04-28
  • 通信作者: 宋旭东
  • 基金资助:
    国家自然科学基金项目(82271067)

Research progress of non-coding RNA related to cataract

Rui Fang, Xudong Song()   

  1. Scientific doctoral degree 2021, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
    Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Vision Sciences, Beijing 100730, China
  • Received:2022-09-01 Published:2023-04-28
  • Corresponding author: Xudong Song
引用本文:

方蕊, 宋旭东. 非编码核糖核酸与白内障相关的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 94-98.

Rui Fang, Xudong Song. Research progress of non-coding RNA related to cataract[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(02): 94-98.

不编码蛋白质的核糖核酸(RNA)称为非编码RNA。其中,调控性非编码RNA主要包括微小RNA(miRNA)、长链非编码RNA(lncRNA)和环状RNA(circRNA)。非编码RNA在细胞生长、增殖、分化、凋亡和氧化应激等多种生物学过程中发挥关键作用。近年来,有许多研究发现非编码RNA在白内障的发生与发展中发挥了调控作用,可能成为非手术治疗而具有应用前景的新靶点。本文中笔者就近年来国内外非编码RNA与白内障的相关研究进展进行综述。

Ribonucleic acid (RNA) that does not encode proteins is called non coding RNA. Among them, regulatory non coding RNA mainly includes microRNA (miRNA), long chain non coding RNA (lncRNA) and circular RNA (circRNA). Non coding RNA plays a crucial role in various biological processes such as cell growth, proliferation, differentiation, apoptosis, and oxidative stress. In recent years, it has been demonstrated that non coding RNA plays an important regulatory role in the occurrence and development of cataracts, and may become a promising new target for non-surgical treatment. In this paper, the research progress on non coding RNA and cataract in recent years both domestically and internationally were reviewed.

[1]
Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010[J]. Br J Ophthalmol, 2012, 96 (5): 614-618.
[2]
Mattick JS, Makunin IV. Non-coding RNA[J]. Hum Mol Genet, 2006, 15: 17-29.
[3]
Hombach S, Kretz M. Non-coding RNAs: Classification, Biology and Functioning[J]. Adv Exp Med Biol, 2016, 937: 3-17.
[4]
Garbo S, Maione R, Tripodi M, et al. Next RNA Therapeutics: The Mine of Non-Coding[J]. Int J Mol Sci, 2022, 23(13): 7471.
[5]
Chen S, Zhang C, Shen L, et al. Noncoding RNAs in cataract formation: star molecules emerge in an endless stream[J]. Pharmacol Res, 2022, 184: 106417.
[6]
Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA[J]. N Engl J, 2013, 368 (18): 1685-1694.
[7]
Altesha MA, Ni T, Khan A, et al. Circular RNA in cardiovascular disease[J]. J Cell Physiol, 2019, 234 (5): 5588-5600.
[8]
Ma Y, Zhang P, Wang F, et al. miR-150 as a potential biomarker associated with prognosis and therapeutic outcome in colorectal cancer[J]. Gut, 2012, 61 (10): 1447-1453.
[9]
Lo IJ, Hill J, Vilhjálmsson BJ, et al. Linking the association between circRNAs and Alzheimer′s disease progression by multi-tissue circular RNA characterization[J]. RNA Biol, 2020, 17 (12): 1789-1797.
[10]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75 (5): 843-854.
[11]
Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell, 1993, 75 (5): 855-862.
[12]
Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136 (2): 215-233.
[13]
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120 (1):15-20.
[14]
Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes[J]. Cell, 2012, 149 (3): 515-524.
[15]
Wu C, Lin H, Wang Q, et al. Discrepant expression of microRNAs in transparent and cataractous human lenses[J]. Invest Ophthalmol Vis Sci, 2012, 53 (7): 3906-3912.
[16]
Kim YJ, Lee WJ, Ko BW, et al. Investigation of MicroRNA Expression in Anterior Lens Capsules of Senile Cataract Patients and MicroRNA Differences According to the Cataract Type[J]. Transl Vis Sci Technol, 2021, 10 (2): 14.
[17]
Zhang C, Hu J, Yu Y. circRNA Is a Rising Star in Researches of Ocular Diseases[J]. Front Cell Dev Biol, 2020, 8: 850.
[18]
Yao P, Jiang J, Ma X, et al. miR-23a-3p regulates the proliferation and apoptosis of human lens epithelial cells by targeting Bcl-2 in an in vitro model of cataracts[J]. Exp Ther Med, 2021, 21 (5): 436.
[19]
Wang X, Wang L, Sun Y, et al. MiR-22-3p inhibits fibrotic cataract through inactivation of HDAC6 and increase of α-tubulin acetylation[J]. Cell Prolif, 2020, 53 (11): e12911.
[20]
De CB, Berx G. Regulatory networks defining EMT during cancer initiation and progression[J]. Nat Rev Cancer, 2013, 13 (2): 97-110.
[21]
Hoffmann A, Huang Y, Suetsugu-Maki R, et al. Implication of the miR-184 and miR-204 competitive RNA network in control of mouse secondary cataract[J]. Mol Med, 2012, 18 (1): 528-538.
[22]
Chen X, Xiao W, Chen W, et al. MicroRNA-26a and -26b inhibit lens fibrosis and cataract by negatively regulating Jagged-1/Notch signaling pathway[J]. Cell Death Differ, 2017, 24 (8): 1431-1442.
[23]
Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA[J]. Nature, 2000, 408 (6808): 86-89.
[24]
Peng CH, Liu JH, Woung LC, et al. MicroRNAs and cataracts: correlation among let-7 expression, age and the severity of lens opacity[J]. Br J Ophthalmol, 2012, 96 (5): 747-751.
[25]
Dong Y, Zheng Y, Xiao J, et al. MicroRNA let-7b induces lens epithelial cell apoptosis by targeting leucine-rich repeat containing G protein-coupled receptor 4 (Lgr4) in age-related cataract[J]. Exp Eye Res, 2016, 147: 98-104.
[26]
Li WC, Kuszak JR, Dunn K, et al. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals[J]. J Cell Biol, 1995, 130 (1): 169-181.
[27]
Zheng Y, Liu Y, Ge J, et al. Resveratrol protects human lens epithelial cells against H2O2-induced oxidative stress by increasing catalase, SOD-1, and HO-1 expression[J]. Mol Vis, 2010, 16: 1467-1474.
[28]
Zhang K, Yin Y, Pei C, et al. MicroRNA-124 regulates lens epithelial cell apoptosis by affecting Fas alternative splicing by targeting polypyrimidine tract-binding protein in age-related cataract[J]. Clin Exp Ophthalmol, 2021, 49 (6): 591-605.
[29]
Liu Y, Li S, Liu Y, et al. MicroRNA-124 facilitates lens epithelial cell apoptosis by inhibiting SPRY2 and MMP-2[J]. Mol Med Rep, 2021, 23(5): 381.
[30]
Lin C, Yang L. Long Noncoding RNA in Cancer: Wiring Signaling Circuitry[J]. Trends Cell Biol, 2018, 28 (4): 287-301.
[31]
Chen LL, Zhao JC. Functional analysis of long noncoding RNAs in development and disease[J]. Adv Exp Med Biol, 2014, 825: 129-158.
[32]
Huang J, Li YJ, Liu JY, et al. Identification of corneal neovascularization-related long noncoding RNAs through microarray analysis[J]. Cornea, 2015, 34 (5): 580-587.
[33]
Shao J, Pan X, Yin X, et al. KCNQ1OT1 affects the progression of diabetic retinopathy by regulating miR-1470 and epidermal growth factor receptor[J]. J Cell Physiol, 2019, 234 (10): 17269-17279.
[34]
Liu X, Liu C, Shan K, et al. Long Non-Coding RNA H19 Regulates Human Lens Epithelial Cells Function[J]. Cell Physiol Biochem, 2018, 50 (1): 246-260.
[35]
Cheng T, Xu M, Qin B, et al. lncRNA H19 contributes to oxidative damage repair in the early age-related cataract by regulating miR-29a/TDG axis[J]. J Cell Mol Med, 2019, 23 (9): 6131-6139.
[36]
Sorte K, Sune P, Bhake A, et al. Quantitative assessment of DNA damage directly in lens epithelial cells from senile cataract patients[J]. Mol Vis, 2011, 17: 1-6.
[37]
Zhang M, Cheng K. Long non-coding RNA KCNQ1OT1 promotes hydrogen peroxide-induced lens epithelial cell apoptosis and oxidative stress by regulating miR-223-3p/BCL2L2 axis[J]. Exp Eye Res, 2021, 206: 108543.
[38]
Li Y, Jiang Q, Cao G, et al. Repertoires of autophagy in the pathogenesis of ocular diseases[J]. Cell Physiol Biochem, 2015, 35 (5): 1663-1676.
[39]
Jin X, Jin H, Shi Y, et al. Long Non-Coding RNA KCNQ1OT1 Promotes Cataractogenesis via miR-214 and Activation of the Caspase-1 Pathway[J]. Cell Physiol Biochem, 2017, 42 (1): 295-305.
[40]
Liu J, Dong Y, Wen Y, et al. lncRNA KCNQ1OT1 knockdown inhibits viability, migration and epithelial-mesenchymal transition in human lens epithelial cells via miR-26a-5p/ITGAV/TGF-beta/Smad3 axis[J]. Exp Eye Res, 2020, 200: 108251.
[41]
Chen B, Ma J, Li C, et al. Long noncoding RNA KCNQ1OT1 promotes proliferation and epithelial mesenchymal transition by regulation of SMAD4 expression in lens epithelial cells[J]. Mol Med Rep, 2018, 18 (1): 16-24.
[42]
Ling J, Tan K, Lu L, et al. lncRNA MIAT increases cell viability, migration, EMT and ECM production in age-related cataracts by regulating the miR-181a/CTGF/ERK signaling pathway[J]. Exp Ther Med, 2020, 20 (2): 1053-1063.
[43]
Dong N. Long Noncoding RNA NEAT1 Regulates TGF-β2-Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells through the miR-34a/Snail1 and miR-204/Zeb1 Pathways[J]. Biomed Res Int, 2020: 8352579.
[44]
Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic[J]. Pharmacol Ther, 2018, 187: 31-44.
[45]
Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73 (11): 3852-3856.
[46]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495 (7441): 384-388.
[47]
Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biol, 2014, 15 (7): 409.
[48]
Pang Y, Liu Z, Han H, et al. Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation[J]. Hepatol, 2020, 73 (5): 1155-1169.
[49]
Liang S, Dou S, Li W, et al. Profiling of circular RNAs in age-related cataract reveals circZNF292 as an antioxidant by sponging miR-23b-3p[J]. Aging (Albany NY), 2020, 12 (17): 17271-17287.
[50]
Xu X, Gao R, Li S, et al. Circular RNA circZNF292 regulates H O -induced injury in human lens epithelial HLE-B3 cells depending on the regulation of the miR-222-3p/E2F3 axis[J]. Cell Biol Int, 2021, 45 (8): 1757-1767.
[51]
Liu X, Liu B, Zhou M, et al. Circular RNA HIPK3 regulates human lens epithelial cells proliferation and apoptosis by targeting the miR-193a/CRYAA axis[J]. Biochem Biophys Res Commun, 2018, 503 (4): 2277-2285.
[52]
Cui G, Wang L, Huang W. Circular RNA HIPK3 regulates human lens epithelial cell dysfunction by targeting the miR-221-3p/PI3K/AKT pathway in age-related cataract[J]. Exp Eye Res, 2020, 198: 108128.
[53]
Liegl R, Wertheimer C, Kernt M, et al. Attenuation of human lens epithelial cell spreading, migration and contraction via downregulation of the PI3K/Akt pathway[J]. Graefes Arch Clin Exp Ophthalmol, 2014, 252 (2): 285-292.
[54]
Liu Y, Chen T, Zheng G. Exosome-transmitted circ-CARD6 facilitates posterior capsule opacification development by miR-31/FGF7 axis[J]. Exp Eye Res, 2021, 207: 108572.
[55]
Zhou C, Huang X, Li X, et al. Circular RNA erythrocyte membrane protein band 4.1 assuages ultraviolet irradiation-induced apoptosis of lens epithelial cells by stimulating 5′-bisphosphate nucleotidase 1 in a miR-24-3p-dependent manner[J]. Bioengineered, 2021, 12 (1): 8953-8964.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[3] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[4] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[5] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[6] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[7] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[8] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[9] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[10] 孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华. 关注后发性白内障的发病机制及防控措施[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 193-198.
[11] 陈灏楠, 肖伟. 透明角膜切口对白内障术后角膜散光的影响及其精准测量的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 172-176.
[12] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[13] 周洋, 曹学, 赵飞, 郑波, 查惠娟, 蒋娜, 罗俊, 熊伟. 血清miR-22、HSPB1水平与急性Stanford A型主动脉夹层患者预后的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 243-248.
[14] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要