切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (06) : 328 -334. doi: 10.3877/cma.j.issn.2095-2007.2019.06.002

论著

中脑星形胶质细胞源性神经营养因子在视网膜Müller细胞中诱导激活p44/42丝裂原活化蛋白激酶信号通路的实验研究
裴雪婷1,(), 卢建民2, Yiwen Li3, Rong Wen3   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科学与视觉科学重点实验室
    2. 116011 大连医科大学第一附属医院眼科
    3. 33136 美国迈阿密大学巴斯康·帕默眼科研究所
  • 收稿日期:2019-10-16 出版日期:2019-12-28
  • 通信作者: 裴雪婷
  • 基金资助:
    国家自然科学基金项目(81300737); 美国国立卫生研究院资助项目(R01EY015289,R01EY018586); 美国佛罗里达州视觉希望计划(08KN-09,2KF02)

MANF induced p44/42MAPK phosphorylation in retinal Müller cells

Xueting Pei1,(), Jianmin Lu2, Yiwen Li3, Rong Wen3   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing 100730, China
    2. Department of Ophthalmology, First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
    3. Bascom Palmer Eye Institute University of Miami, Miami, FL 33136, USA
  • Received:2019-10-16 Published:2019-12-28
  • Corresponding author: Xueting Pei
引用本文:

裴雪婷, 卢建民, Yiwen Li, Rong Wen. 中脑星形胶质细胞源性神经营养因子在视网膜Müller细胞中诱导激活p44/42丝裂原活化蛋白激酶信号通路的实验研究[J]. 中华眼科医学杂志(电子版), 2019, 09(06): 328-334.

Xueting Pei, Jianmin Lu, Yiwen Li, Rong Wen. MANF induced p44/42MAPK phosphorylation in retinal Müller cells[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(06): 328-334.

目的

中脑星形胶质细胞源性神经营养因子(MANF)可能对视网膜光感受器细胞和视网膜神经节细胞具有保护性作用。但是其作用机制还不清楚。本研究探索MANF在视网膜上的作用通路,为其在眼科的应用奠定基础。

方法

选用Sprague-Dawley雄性大鼠25只,体重0.2~0.25 kg。采用数字表法,随机将大鼠分为未处理组和处理组。其中,未处理组5只,处理组左眼注射重组人MANF10 μg (3 μl),右眼注射磷酸盐缓冲液(PBS)3 μl,分别于注射后0.5 h、1 h、2 h及4 h四个时间点取材视网膜,每个时间点5只大鼠。新生大鼠视网膜分离培养原代Müller细胞,100ng/ml MANF处理细胞后,在不同时间点收集细胞Western blot检测磷酸化p44/42丝裂原活化蛋白激酶(MAPK)的表达水平,冰冻切片免疫组化检测MANF诱导活化的磷酸化p44/42MAPK在视网膜上的定位。以Image J图像分析软件分析图像,Western blot条带密度比值和免疫荧光强度为计量资料以(±s)表示;各时间点与未处理组组间,采用独立样本t检验的方法进行比较。

结果

SD大鼠玻璃体腔注射MANF后,磷酸化p44/42MAPK的表达在0.5 h就开始明显升高,1 h达到高峰,较对照玻璃体腔注射PBS组和未处理组差异均具有统计学意义(t=21.18,4.41;P<0.05),然后逐渐下降,4 h降至未处理组水平。冰冻切片免疫组化检查结果显示磷酸化p44/42MAPK阳性的细胞位于视网膜内核层的Müller细胞,其荧光强度显著高于阴性未处理组,差异有统计学意义(t=11.41,P<0.05)。原代培养的Müller细胞经MANF处理后,磷酸化p44/42MAPK在5 min时较未处理组就有显著升高,差异有统计学意义(t=4.48,6.43;P<0.05),15 min达到高峰,差异有统计学意义(t=19.57,9.18;P<0.05),到30 min降至正常水平。

结论

p44/42MAPK信号通路参与了MANF的神经保护作用机制。MANF直接作用于视网膜Müller细胞,可能通过与Müller细胞的相互作用起到细胞保护性作用。

Objective

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a potent neurotrophic factor for photoreceptors and retinal ganglion cells. But the mechanism underlying its neuroprotective effects is not well understood. Our present work investigate potential signaling mechanism and pathway underlying these action effects.

Methods

25 Sprague-Dawley male rats (weight 0.2 to 0.25 kg) were selected. They were randomly divided into untreated group and 4 treated groups with different treating time. There were 5 rats in each group. In treated group, the left eyes of SD rats were injected intravitreally with 10 μg MANF (3 μl), and the right eyes were injected with 3 μl PBS (phosphate buffered saline) as negative controls. Retinas were collected at 0.5 h, 1 h, 2 h, 4 h after injection. Müller cells were isolated from rat retina and cultured in DMEM + 10% fetal bovine serum. Cells were treated with MANF (100 ng/ml) and collected at given time points after addition of MANF. The levels of phospho-p44/42MAPK wereassessed by Western blot analysis. Immunohistochemical analysis using frozen section was employed to localize the MANF-induced phospho-p44/42MAPK. Images were analyzed using Image J analysis system. Relative density ratio of Western blot bands and immune fluorescence intensity were represented as means±standard errors(±s). Independent sample t test was used to compare MANF treated and control groups.

Results

A dramatic significant increase in phospho-p44/42MAPK was detected 30 min after MANF injection into the vitreous, and increase to the peak at 1 hour (t=21.18, 4.41; P<0.05), then declined to normal level at 4 hours. Immunostaining for phospho-p44/42MAPK detected a group of positive cells in the inner nuclear layer, with characteristics of Müller cells. The immune fluorescence intensity was significantly stronger than control group (t=11.41, P<0.05). The MANF-induced phospho-p44/42MAPK was confirmed in cultured Müller cells. Addition of MANF (100 ng/ml) to culture medium induced a significant increase in phospho-p44/42MAPK as soon as 5 min (t=4.48, 6.43; P<0.05). The increase in phospho-p44/42MAPK reached a peak at 15 min after treatment (t=19.57, 9.18; P<0.05) and declined to normal level by 30 min.

Conclusions

This data strongly suggests that the p44/42MAPK pathway is involved in mediating extracellular neurotrophic activity of MANF. Experiments with cultured Müller cells could provide the evidence that MANF directly had the interaction with Müller cells.

图3 共聚焦显微镜下玻璃体腔注射1 h后磷酸化p44/42丝裂原活化蛋白激酶冰冻切片免疫荧光显微结构图 图3A、3B及3C示注射磷酸盐缓冲液1 h后的冰冻切片免疫荧光染色图;图3D、3E示注射中脑星形胶质细胞源性神经营养因子1 h后的冰冻切片免疫荧光染色图;图3A、3D示蓝色荧光为4', 6-二脒基-2-苯基吲哚染色标记细胞核的位置;图3B、3E示红色荧光为Cy3荧光标记的羊抗兔二抗,一抗为兔抗人磷酸化p44/42丝裂原活化蛋白激酶抗体;图3C、3F示融合后的图像。中脑星形胶质细胞源性神经营养因子处理组较未处理组的磷酸化p44/42丝裂原活化蛋白激酶表达显著增强,细胞形态定位于视网膜Müller细胞(×20)
表1 SD大鼠未处理组与处理组各时间段Western blot条带磷酸化p44/42MAPK与p44/42MAPK密度比值的比较(±s)
表2 未处理组与处理组大鼠视网膜Müller细胞Western blot条带磷酸化p44/42MAPK与p44/42MAPK密度比值的比较(±s)
[1]
Petrova P, Raibekas A, Pevsner J, et al. MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons[J]. J Mol Neurosci, 2003, 20(2): 173-188.
[2]
Palgi M, Lindstrom R, Peranen J, et al. Evidence that DmMANF is an invertebrate neurotrophic factor supporting dopaminergic neurons[J]. Proc Natl Acad Sci U S A, 2009, 106(7): 2429-2434.
[3]
Voutilainen MH, Back S, Porsti E, et al. Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson's disease[J]. J Neurosci, 2009, 29(30): 9651-9659.
[4]
Lu J, Luo L, Huang D, et al. Photoreceptor Protection by Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF)[J]. eNeuro, 2018, 5(2): 109-118.
[5]
Gao FJ, Zhang SH, Li TT, et al. Expression and Distribution of Mesencephalic Astrocyte-Derived Neurotrophic Factor in the Retina and Optic Nerve[J]. Front Hum Neurosci, 2016, 10(1): 686.
[6]
Brooks DE, Garcia GA, Dreyer EB, et al. Vitreous body glutamate concentration in dogs with glaucoma[J]. Am J Vet Res, 1997, 58(8): 864-867.
[7]
Dreyer EB, Zurakowski D, Schumer RA, et al. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma[J]. Arch Ophthalmol, 1996, 114(3): 299-305.
[8]
Chen Y, Palczewska G, Mustafi D, et al. Systems pharmacology identifies drug targets for Stargardt disease-associated retinal degeneration[J]. J Clin Invest, 2013, 123(12): 5119-5134.
[9]
Nishimura T, Ishima T, Iyo M, et al. Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways[J]. PLoS One, 2008, 3(7): e2558.
[10]
Wen R, Cheng T, Li Y, et al. Alpha 2-adrenergic agonists induce basic fibroblast growth factor expression in photoreceptors in vivo and ameliorate light damage[J]. J Neurosci, 1996, 16(19): 5986-5992.
[11]
Harun-Or-Rashid M, Hallbook F. Alpha 2-Adrenergic Receptor Agonist Brimonidine Stimulates ERK1/2 and AKT Signaling via Transactivation of EGF Receptors in the Human MIO-M1 Muller Cell Line[J]. Curr Eye Res, 2019, 44(1): 34-45.
[12]
Berson EL, Rosner B, Sandberg MA, et al. Clinical trial of lutein in patients with retinitis pigmentosa receiving vitamin A[J]. Arch Ophthalmol, 2010, 128(4): 403-411.
[13]
Ait-Ali N, Fridlich R, Millet-Puel G, et al. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis[J]. Cell, 2015, 161(4): 817-832.
[14]
Lee SY, Usui S, Zafar AB, et al. N-Acetylcysteine promotes long-term survival of cones in a model of retinitis pigmentosa[J]. J Cell Physiol, 2011, 226(7): 1843-1849.
[15]
Lambiase A, Aloe L, Centofanti M, et al. Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: Implications for glaucoma[J]. Proc Natl Acad Sci U S A, 2009, 106(32): 13469-13474.
[16]
Mesentier-Louro LA, Rosso P, Carito V, et al. Nerve Growth Factor Role on Retinal Ganglion Cell Survival and Axon Regrowth: Effects of Ocular Administration in Experimental Model of Optic Nerve Injury[J]. Mol Neurobiol, 2019, 56(2): 1056-1069.
[17]
Chen H, Weber AJ. BDNF enhances retinal ganglion cell survival in cats with optic nerve damage[J]. Invest Ophthalmol Vis Sci, 2001, 42(5): 966-974.
[18]
Domenici L, Origlia N, Falsini B, et al. Rescue of retinal function by BDNF in a mouse model of glaucoma[J]. PLoS One, 2014, 9(12): e115579.
[19]
Blanco RE, Vega-Melendez GS, De La Rosa-Reyes V, et al. Application of CNTF or FGF-2 increases the number of M2-like macrophages after optic nerve injury in adult Rana pipiens[J]. PLoS One, 2019, 14(5): e209733.
[20]
Flachsbarth K, Jankowiak W, Kruszewski K, et al. Pronounced synergistic neuroprotective effect of GDNF and CNTF on axotomized retinal ganglion cells in the adult mouse[J]. Exp Eye Res, 2018, 176(11): 258-265.
[21]
Sieving PA, Caruso RC, Tao W, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants[J]. Proc Natl Acad Sci U S A, 2006, 103(10): 3896-3901.
[22]
Sallo FB, Leung I, Clemons TE, et al. Correlation of structural and functional outcome measures in a phase one trial of ciliary neurotrophic factor in type 2 idiopathic macular telangiectasia.[J]. Retina, 2018, 38 (Suppl 1): S27-S32.
[23]
Chew EY, Clemons TE, Jaffe GJ, et al. Effect of Ciliary Neurotrophic Factor on Retinal Neurodegeneration in Patients with Macular Telangiectasia Type 2: A Randomized Clinical Trial[J]. Ophthalmology, 2019, 126(4): 540-549.
[24]
Li S, Sato K, Gordon WC, et al. Ciliary neurotrophic factor (CNTF) protects retinal cone and rod photoreceptors by suppressing excessive formation of the visual pigments[J]. J Biol Chem, 2018, 293(39): 15256-15268.
[25]
Zaccaro MC, Lee HB, Pattarawarapan M, et al. Selective small molecule peptidomimetic ligands of TrkC and TrkA receptors afford discrete or complete neurotrophic activities[J]. Chem Biol, 2005, 12(9): 1015-1028.
[26]
Lebrun-Julien F, Morquette B, Douillette A, et al. Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells[J]. Mol Cell Neurosci, 2009, 40(4): 410-420.
[27]
Ghasemi M, Alizadeh E, Saei AK, et al. Ciliary neurotrophic factor (CNTF) delivery to retina: an overview of current research advancements[J]. Artif Cells Nanomed Biotechnol, 2018, 46(8): 1694-1707.
[28]
Lindholm P, Peranen J, Andressoo JO, et al. MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain[J]. Mol Cell Neurosci, 2008, 39(3): 356-371.
[29]
Wang H, Ke Z, Alimov A, et al. Spatiotemporal expression of MANF in the developing rat brain[J]. PLoS One, 2014, 9(2): e90433.
[30]
Hellman M, Arumae U, Yu LY, et al. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons[J]. J Biol Chem, 2011, 286(4): 2675-2680.
[31]
Cohen H, Lavu S, Bitterman KJ, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis[J]. Mol Cell, 2004, 13(5): 627-638.
[32]
Tadimalla A, Belmont PJ, Thuerauf DJ, et al. Mesencephalic Astrocyte-Derived Neurotrophic Factor Is an Ischemia-Inducible Secreted Endoplasmic Reticulum Stress Response Protein in the Heart[J]. Circulation Research, 2008, 103(11): 1249-1258.
[33]
Apostolou A, Shen Y, Liang Y, et al. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death[J]. Exp Cell Res, 2008, 314(13): 2454-2467.
[34]
Glembotski CC, Thuerauf DJ, Huang C, et al. Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion[J]. J Biol Chem, 2012, 287(31): 25893-25904.
[35]
Cunha DA, Cito M, Grieco FA, et al. Pancreatic beta-cell protection from inflammatory stress by the endoplasmic reticulum proteins thrombospondin 1 and mesencephalic astrocyte-derived neutrotrophic factor (MANF)[J]. J Biol Chem, 2017, 292(36): 14977-14988.
[36]
Hakonen E, Chandra V, Fogarty CL, et al. MANF protects human pancreatic beta cells against stress-induced cell death[J]. Diabetologia, 2018, 61(10): 2202-2214.
[37]
Lindahl M, Danilova T, Palm E, et al. MANF is indispensable for the proliferation and survival of pancreatic beta cells[J]. Cell Rep, 2014, 7(2): 366-375.
[38]
Wang XY, Song MM, Bi SX, et al. MRI Dynamically Evaluates the Therapeutic Effect of Recombinant Human MANF on Ischemia/Reperfusion Injury in Rats[J]. Int J Mol Sci, 2016, 17(9): 1476-1479.
[39]
Airavaara M, Shen H, Kuo CC, et al. Mesencephalic astrocyte-derived neurotrophic factor reduces ischemic brain injury and promotes behavioral recovery in rats[J]. J Comp Neurol, 2009, 515(1): 116-124.
[40]
Airavaara M, Chiocco MJ, Howard DB, et al. Widespread cortical expression of MANF by AAV serotype 7: localization and protection against ischemic brain injury[J]. Exp Neurol, 2010, 225(1): 104-113.
[41]
Miller ML, Alegre ML. Super-MANF to the Rescue: Immunomodulation Improves Retinal Repair and Regenerative Cell Therapy[J]. Am J Transplant, 2017, 17(1): 3.
[42]
Kahn MA, Huang CJ, Caruso A, et al. Ciliary neurotrophic factor activates JAK/Stat signal transduction cascade and induces transcriptional expression of glial fibrillary acidic protein in glial cells[J]. J Neurochem, 1997, 68(4): 1413-1423.
[43]
Sagar SM, Edwards RH, Sharp FR. Epidermal growth factor and transforming growth factor alpha induce c-fos gene expression in retinal Muller cells in vivo[J]. J Neurosci Res, 1991, 29(4): 549-559.
[44]
Ekstrom P, Sanyal S, Narfstrom K, et al. Accumulation of glial fibrillary acidic protein in Muller radial glia during retinal degeneration[J]. Invest Ophthalmol Vis Sci, 1988, 29(9): 1363-1371.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[3] 吴瑟菲, 苗金红, 谭舒眉, 李学民, 韩亮, 次仁琼达, 央珍, 胡晋平. 纯全氟丙烷填充联合玻璃体切割术治疗视网膜脱离的临床疗效观察[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 205-209.
[4] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[5] 崔宏宇, 杨一佺, 郭黎霞, 吕爱国, 张志宏, 张新, 杨艳萍, 申然, 连丽英, 曹志刚, 王立芳, 胡建华, 范肃洁. 改良Ahmed青光眼引流阀植入术治疗闭角期新生血管性青光眼疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 76-81.
[6] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[7] 陈子扬, 谢立科, 郝晓凤, 张小艳. 抗磷脂抗体相关视网膜血管阻塞的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 367-371.
[8] 赵一鸣, 杨瑶, 林晓峰. 玻璃体腔注射低浓度碱溶液诱导小鼠视网膜内增殖模型的实验研究[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 268-274.
[9] 李茹月, 李明华, 张凯文, 张悦, 牟大鹏, 王宁利, 刘含若. 早期筛查老年人群糖尿病视网膜病变的卫生经济学分析[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 216-221.
[10] 付鹏, 沈念, 黄艳玲, 杨水平, 万小波. 外伤性晶状体脱位合并周边隐匿性视网膜病变的临床特征及预后分析[J]. 中华临床医师杂志(电子版), 2022, 16(06): 536-540.
[11] 郑小迪, 甘海润, 蔡建勋, 李露婷, 庞鹏飞, 李冰. PLK3基因Y318H罕见突变促进视网膜母细胞瘤的生长[J]. 中华介入放射学电子杂志, 2023, 11(02): 146-154.
[12] 李冰, 甘海润, 蔡建勋, 龙浩宇, 李露婷. 血管内皮细胞Ddx24基因条件性敲除鼠构建以及对视网膜血管新生的影响[J]. 中华介入放射学电子杂志, 2022, 10(04): 429-435.
[13] 王亮, 郭磊, 李海波, 刘壮, 宋丹, 李静, 张靖. 经后交通动脉进行眼动脉灌注化疗术治疗儿童视网膜母细胞瘤的多中心经验[J]. 中华介入放射学电子杂志, 2022, 10(04): 414-417.
[14] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
[15] 杨莲, 罗争, 龚娇. 合并阻塞性睡眠呼吸暂停低通气综合征对老年人2型糖尿病视网膜病变的影响[J]. 中华老年病研究电子杂志, 2022, 09(03): 33-36.
阅读次数
全文


摘要