切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2024, Vol. 14 ›› Issue (03) : 187 -192. doi: 10.3877/cma.j.issn.2095-2007.2024.03.011

综述

雌激素在糖尿病性视网膜病变中作用机制的研究进展
王子琪1,(), 李萍2, 蔡标2, 杨秀敏2   
  1. 1. 230000 合肥爱尔眼科医院眼底病科;230000 合肥,安徽医科大学爱尔眼科医学中心
    2. 230000 合肥爱尔眼科医院眼底病科
  • 收稿日期:2024-06-03 出版日期:2024-06-28
  • 通信作者: 王子琪
  • 基金资助:
    安徽医科大学校基金资助项目(2022xkj135)

Research progress on the mechanism of estrogen in diabetes retinopathy

Ziqi Wang1,(), Ping Li2, Biao Cai2, Xiumin Yang2   

  1. 1. Department of Fundus Diseases, Hefei AIER Eye Hospital, Hefei 230000, China; AIER Eye Medical Center, Anhui Medical University, Hefei 230000, China
    2. Department of Fundus Diseases, Hefei AIER Eye Hospital, Hefei 230000, China
  • Received:2024-06-03 Published:2024-06-28
  • Corresponding author: Ziqi Wang
引用本文:

王子琪, 李萍, 蔡标, 杨秀敏. 雌激素在糖尿病性视网膜病变中作用机制的研究进展[J]. 中华眼科医学杂志(电子版), 2024, 14(03): 187-192.

Ziqi Wang, Ping Li, Biao Cai, Xiumin Yang. Research progress on the mechanism of estrogen in diabetes retinopathy[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(03): 187-192.

糖尿病性视网膜病变(DR)是糖尿病常见且严重的微血管并发症,也是导致50岁及以上成年人失明和视力障碍的主要原因。近年来,糖尿病患病率持续上升,人口老龄化日渐加剧,DR的发病率显著增加,成为全球公共卫生面临的重大挑战。DR的病理机制复杂,包括高血糖诱导的代谢紊乱、氧化应激、炎症反应、血管病变以及神经变性等。有研究结果表明,雌激素通过抗炎、抗氧化、保护血管及抑制新生血管生成等作用可潜在延缓DR进展。本文中笔者总结了雌激素在DR中作用机制的最新研究进展,旨在为DR的临床治疗提供新思路。

Diabetic retinopathy (DR) is a common and serious microvascular complication of diabetes, which is the leading cause of blindness and vision impairment in adults aged 50 and above. In recent years, the prevalence of diabetes has been rising continuously, and with an aging population, the incidence of DR has significantly increased, posing a major challenge to global public health. The pathological mechanisms of DR are complex, involving hyperglycemia-induced metabolic disorders, oxidative stress, inflammatory responses, vascular abnormalities, and neurodegeneration, etc. It has been demonstrated that estrogen potentially delays DR development through its anti-inflammatory, antioxidant, vascular protective, and anti-angiogenic effects. The latest research progress on the mechanisms of estrogen in DR were summarized, which to provide the new insights for the clinical treatment of DR in this paper.

图1 糖尿病性视网膜病变病理机制和雌激素作用机制的示意图 实线箭头代表促进作用,虚线箭头代表抑制作用
[1]
GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study.Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study [J]. Lancet Glob Health, 2021, 9(2): e144-e160.
[2]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045 [J]. Diabetes Res Clin Pract, 2019, 157: 107843.
[3]
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis [J]. Ophthalmology, 2021, 128(11): 1580-1591.
[4]
Hou X, Wang L, Zhu D, et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China [J]. Nat Commun, 2023, 14(1): 4296.
[5]
Sriprasert I, Hodis HN, Bernick B, et al. Effects of estradiol dose and serum estradiol levels on metabolic measures in early and late postmenopausal women in the Replenish trial [J]. J Womens Health (Larchmt), 2020, 29(8): 1052-1058.
[6]
史晓英,何洪真,郭星,等. 雌激素与脑白质高信号[J]. 国际脑血管病杂志202129(12):943-947.
[7]
Obrosova IG, Kador PF. Aldose reductase-polyol inhibitors for diabetic retinopathy [J]. Curr Pharm Biotechnol, 2011, 12(3): 373-385.
[8]
Dhulekar J, Simionescu A. Challenges in vascular tissue engineering for diabetic patients [J]. Acta Biomater, 2018, 70: 25-34.
[9]
Oshitari T. Advanced glycation end-products and diabetic neuropathy of the retina [J]. Int J Mol Sci, 2023, 24(3): 2927.
[10]
Zhang C, Gu L, Xie H, et al. Glucose transport, transporters and metabolism in diabetic retinopathy [J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(3): 166995.
[11]
Dierschke SK, Miller WP, Favate JS, et al. O-GlcNAcylation alters the selection of mRNAs for translation and promotes 4E-BP1-dependent mitochondrial dysfunction in the retina [J]. J Biol Chem, 2019, 294(14): 5508-5520.
[12]
Juan CA, Pérez-De-La Lastra JM, Plou FJ, et al. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies [J]. Int J Mol Sci, 2021, 22(9): 4642.
[13]
Tawfik A, Sanders T, Kahook K, et al. Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase [J]. Invest Ophthalmol Vis Sci, 2009, 50(2): 878-884.
[14]
Deragon MA, Mccaig WD, Truong PV, et al. Mitochondrial trafficking of MLKL, Bak/Bax, and Drp1 is mediated by RIP1 and ROS which leads to decreased mitochondrial membrane integrity during the hyperglycemic shift to necroptosis [J]. Int J Mol Sci, 2023, 24(10): 8609.
[15]
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species [J]. Biochim Biophys Acta, 2016, 1863(12): 2977-2992.
[16]
Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling [J]. Cell Res, 2011, 21(1): 103-115.
[17]
Wang H, Zhang M, Zhou H, et al. Salusin-β mediates high glucose-induced inflammation and apoptosis in retinal capillary endothelial cells via a ROS-dependent pathway in diabetic retinopathy [J]. Diabetes Metab Syndr Obes, 2021, 14: 2291-2308.
[18]
Bang E, Park C, Hwangbo H, et al. Spermidine attenuates high glucose-induced oxidative damage in retinal pigment epithelial cells by inhibiting production of ROS and NF-κB/NLRP3 inflammasome pathway [J]. Int J Mol Sci, 2023, 24(13): 10550.
[19]
Lin YT, Chen LK, Jian DY, et al. Visfatin promotes monocyte adhesion by upregulating ICAM-1 and VCAM-1 expression in endothelial cells via activation of p38-pi3k-akt signaling and subsequent ROS production and IKK/NF-κB activation [J]. Cell Physiol Biochem, 2019, 52(6): 1398-1411.
[20]
Liu Y, Li L, Pan N, et al. TNF-α released from retinal Müller cells aggravates retinal pigment epithelium cell apoptosis by upregulating mitophagy during diabetic retinopathy [J]. Biochem Biophys Res Commun, 2021, 561: 143-150.
[21]
Zhang T, Ouyang H, Mei X, et al. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibiting hyperglycemia-mediated ERK1/2-NF-κB signaling pathway [J]. Faseb J, 2019, 33(11): 11776-11790.
[22]
Katakami N, Matsuhisa M, Kaneto H, et al. Monocyte chemoattractant protein-1 (MCP-1) gene polymorphism as a potential risk factor for diabetic retinopathy in Japanese patients with type 2 diabetes [J]. Diabetes Res Clin Pract, 2010, 89(1): e9-e12.
[23]
Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy [J]. Prog Retin Eye Res, 2021, 82: 100903.
[24]
Lee TH, Hsieh ST, Chiang HY. Fibronectin inhibitor pUR4 attenuates tumor necrosis factor α-induced endothelial hyperpermeability by modulating β1 integrin activation [J]. J Biomed Sci, 2019, 26(1): 37.
[25]
丁舟,王杨宁致,张喆,等. 糖尿病视网膜病变血-视网膜屏障的损伤机制[J]. 国际眼科纵览201640(2):98-103.
[26]
Yang J, Liu D, Liu Z. Integration of metabolomics and proteomics in exploring the endothelial dysfunction mechanism induced by serum exosomes from diabetic retinopathy and diabetic nephropathy patients [J]. Front Endocrinol, 2022, 13: 830466.
[27]
陈平,魏雪梅,谈丽丽. 莫诺苷调控miR-483-5p表达对高糖诱导的人视网膜血管内皮细胞氧化应激和凋亡影响[J]. 中国临床解剖学杂志202341(4):434-439.
[28]
陈丽娜,刘焕梅. Ⅱ型糖尿病并发视网膜病变患者外周血炎症因子及血管内皮生长因子指标变化的临床研究[J]. 中国实用医刊201946(8):45-48.
[29]
Yuan C, Mo Y, Yang J, et al. Influences of advanced glycosylation end products on the inner blood-retinal barrier in a co-culture cell model in vitro [J]. Open Life Sci, 2020, 15(1): 619-628.
[30]
Mustafi D, Saraf SS, Shang Q, et al. New developments in angiography for the diagnosis and management of diabetic retinopathy [J]. Diabetes Res Clin Pract, 2020, 167: 108361.
[31]
Amoaku WM, Ghanchi F, Bailey C, et al. Diabetic retinopathy and diabetic macular oedema pathways and management: UK Consensus Working Group [J]. Eye, 2020, 34(1): 1-51.
[32]
Xia M, Jiao L, Wang XH, et al. Single-cell RNA sequencing reveals a unique pericyte type associated with capillary dysfunction [J]. Theranostics, 2023, 13(8): 2515-2530.
[33]
Nukada H. Ischemia and diabetic neuropathy [J]. Handb Clin Neurol, 2014, 126: 469-487.
[34]
Mrugacz M, Bryl A, Zorena K. Retinal vascular endothelial cell dysfunction and neuroretinal degeneration in diabetic patients [J]. J Clin Med, 2021, 10(3): 458.
[35]
Baum P, Toyka KV, Blüher M, et al. Inflammatory mechanisms in the pathophysiology of diabetic peripheral neuropathy (DN)-new aspects [J]. Int J Mol Sci, 2021, 22(19): 10835.
[36]
Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neuro-degeneration [J]. Int J Mol Sci, 2018, 19(1): 110.
[37]
张新媛,王麒雲,陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J/OL]. 中华眼科医学杂志(电子版)202313(1):6-11.
[38]
Wang Q, Qiao Z, Kang W, et al. Comparative analysis of co-culture and monoculture models in simulating diabetic neuro-vascular dysfunction: insights into diabetic retinopathy [J]. Front Endocrinol (Lausanne), 2023, 14: 1215218.
[39]
Zerbini G, Maestroni S, Leocani L, et al. Topical nerve growth factor prevents neurodegenerative and vascular stages of diabetic retinopathy [J]. Front Pharmacol, 2022, 13: 1015522.
[40]
Xing D, Nozell S, Chen YF, et al. Estrogen and mechanisms of vascular protection [J]. Arterioscler Thromb Vasc Biol, 2009, 29(3): 289-295.
[41]
Xing D, Feng W, Miller AP, et al. Estrogen modulates TNF-alpha-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-beta activation [J]. Am J Physiol Heart Circ Physiol, 2007, 292(6): 2607-2612.
[42]
Li H, Zhu C, Wang B, et al. 17β-estradiol protects the retinal nerve cells suppressing tlr2 mediated immune-inflammation and apoptosis from oxidative stress insult independent of PI3K [J]. J Mol Neurosci, 2016, 60(2): 195-204.
[43]
Ikelle L, Naash MI, Al-Ubaidi MR. Modulation of SOD3 levels is detrimental to retinal homeostasis [J]. Antioxidants (Basel), 2021, 10(10): 1595.
[44]
Chaychi S, Polosa A, Chemtob S, et al. Evaluating the neuroprotective effect of 17β-estradiol in rodent models of oxidative retinopathies [J]. Doc Ophthalmol, 2018, 137(3): 151-168.
[45]
Hao M, Li Y, Lin W, et al. Estrogen prevents high-glucose-induced damage of retinal ganglion cells via mitochondrial pathway [J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(1): 83-90.
[46]
Prokai-Tatrai K, Zaman K, Nguyen V, et al. Proteomics-based retinal target engagement analysis and retina-targeted delivery of 17β-Estradiol by the DHED prodrug for ocular neurotherapy in males [J]. Pharmaceutics, 2021, 13(9): 1392.
[47]
Torres MJ, Ryan TE, Lin CT, et al. Impact of 17β-estradiol on complex Ⅰ kinetics and H(2)O(2) production in liver and skeletal muscle mitochondria [J]. J Biol Chem, 2018, 293(43): 16889-16898.
[48]
Mineo C, Shaul PW. Regulation of eNOS in caveolae [J]. Adv Exp Med Biol, 2012, 729: 51-62.
[49]
Parvathaneni K, Grigsby JG, Betts BS, et al. Estrogen-induced retinal endothelial cell proliferation: possible involvement of pigment epithelium-derived factor and phosphoinositide 3-kinase/mitogen-activated protein kinase pathways [J]. J Ocul Pharmacol Ther, 2013, 29(1): 27-32.
[50]
Chen X, Zhang M, Jiang C, et al. Estrogen attenuates VEGF-initiated blood-retina barrier breakdown in male rats [J]. Horm Metab Res, 2011, 43(9): 614-618.
[51]
Schmidl D, Schmetterer L, Garhöfer G, et al. Gender differences in ocular blood flow [J]. Curr Eye Res, 2015, 40(2): 201-212.
[52]
Ma X, Bi H, Qu Y, et al. The contrasting effect of estrogen on mRNA expression of VEGF in bovine retinal vascular endothelial cells under different oxygen conditions [J]. Graefes Arch Clin Exp Ophthalmol, 2011, 249(6): 871-877.
[53]
Hyder SM, Liang Y, Wu J. Estrogen regulation of thrombospondin-1 in human breast cancer cells [J]. Int J Cancer, 2009, 125(5): 1045-1053.
[54]
Likhite N, Yadav V, Milliman EJ, et al. Loss of estrogen-related receptor alpha facilitates angiogenesis in endothelial cells [J]. Mol Cell Biol, 2019, 39(5): e00411-e00418.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 谢芬, 陈洁, 张媛媛, 刘茜, 胡芬, 李恭驰, 李炳辉, 金环. 移动健康管理模式在糖尿病足管理中的应用效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 335-340.
[3] 苏永涛, 王春雷, 徐广琪, 关中正, 焦伟, 隋颖. 胫骨骨膜牵张术联合富血小板血浆对治疗糖尿病足溃疡的疗效观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(03): 238-244.
[4] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[5] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[6] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[7] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[8] 殷国青, 曾莉, 贺斌峰, 孙芬芬. Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 349-355.
[9] 何娅妮. 糖尿病肾脏病患者的血糖监测评估与降糖治疗[J]. 中华肾病研究电子杂志, 2024, 13(03): 180-180.
[10] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[11] 陈雪飞, 卜雄建, 张春良. 神经内镜下经鼻蝶窦扩大鞍底入路颅咽管瘤切除术的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 160-165.
[12] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[13] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[14] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
[15] 白璐, 李青霞, 冯一卓, 刘雪倩, 刘若琪, 曲卓敏, 赵凌霞. 丁酸盐治疗糖尿病肾病的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(03): 303-308.
阅读次数
全文


摘要