切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (06) : 376 -380. doi: 10.3877/cma.j.issn.2095-2007.2023.06.011

综述

糖尿病视网膜病变分子生物标志物的研究进展
刘涵1, 沈强1, 张蓝月1, 陈健2,()   
  1. 1. 402260 重庆大学附属江津医院眼科
    2. 402260 重庆市江津区中医院脾胃病内分泌科
  • 收稿日期:2023-12-01 出版日期:2023-12-28
  • 通信作者: 陈健
  • 基金资助:
    重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX1061,CSTB2023NSCQ-MSX0639); 2023年重庆市公共卫生重点专科(学科)建设项目; 重庆市江津区科学技术局项目(Y2023016)

Research progress on molecular biomarkers of diabetic retinopathy

Han Liu1, Qiang Shen1, Lanyue Zhang1, Jian Chen2,()   

  1. 1. Department of Ophthalmology, Jiangjin Hospital affiliated to Chongqing University, Chongqing 402260, China
    2. Department of Spleen, Stomach and Endocrinology, Jiangjin District Hospital of Traditional Chinese Medicine, Chongqing 402260, China
  • Received:2023-12-01 Published:2023-12-28
  • Corresponding author: Jian Chen
引用本文:

刘涵, 沈强, 张蓝月, 陈健. 糖尿病视网膜病变分子生物标志物的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 376-380.

Han Liu, Qiang Shen, Lanyue Zhang, Jian Chen. Research progress on molecular biomarkers of diabetic retinopathy[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(06): 376-380.

糖尿病会引起糖尿病视网膜病变(DR),是成人失明和低视力的重要原因。血清、眼内液和泪液中血管内皮生长因子(VEGF)水平与DR严重程度密切相关,是一种合适的生物标志物。多种微小核糖核酸(miRNA)在DR中有所变化,能够预测与判断DR病情。内皮素(ET)-1参与DR的发生与发展,其拮抗剂可能成为新的DR治疗方向。晚期糖基化终末产物(AGE)通过不同的机制参与DR发病。非对称二甲基精氨酸(ADMA)水平升高参与DR起病且与DR的严重程度成正比。白细胞介素(IL)和肿瘤坏死因子(TNF)等炎症介质也从不同程度影响DR。本文中笔者拟就DR机制中不同的分子生物标志物进行综述,旨在为DR提供一种新的诊断和治疗思路。

Diabetes can cause diabetes retinopathy (DR), which is an important cause of adult blindness and low vision. The levels of vascular endothelial growth factor (VEGF) in serum, intraocular fluid, and tears are closely related to the severity of DR, which are an appropriate biomarker. Multiple types of microribonucleic acids (miRNAs) undergo changes in patients with DR, which can be used to predict and determine the condition of DR. Endothelin (ET)-1 is involved in the occurrence and development of DR, and its antagonists may become a new direction for DR treatment. Advanced glycation end products (AGE) are involved in the pathogenesis of DR through different mechanisms. Elevated levels of asymmetric dimethylarginine (ADMA) are involved in the onset of DR, which have directly proportional relations with the severity of DR. Inflammatory mediators such as interleukin (IL) and tumor necrosis factor (TNF) also affect DR to various degrees. The different molecular biomarkers in the DR mechanism were reviewed in this paper, aiming to provide a new diagnostic and therapeutic approach for DR.

[1]
Teo ZL, Tham YC, Yu M, et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591.
[2]
刘涵,方晏红,张蓝月,等. 血脂异常与糖尿病视网膜病变的相关性研究进展[J]. 中华眼科医学杂志(电子版)202313(5):301-305.
[3]
Nawaz IM, Rezzola S, Cancarini A, et al. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications[J]. Prog Retin Eye Res, 2019, 72: 100756.
[5]
Arrigo A, Aragona E, Bandello F. VEGF-targeting drugs for the treatment of retinal neovascularization in diabetic retinopathy[J]. Ann Med, 2022, 54(1): 1089-1111.
Wang X, Bove AM, Simone G, et al. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role[J].Front Cell Dev Biol, 2020, 8: 599281.
[6]
Bucolo C, Barbieri A, ViganòI, et al. Short-and Long-Term Expression of Vegf: A Temporal Regulation of a Key Factor in Diabetic Retinopathy[J]. Front Pharmacol, 2021, 12: 707909.
[7]
Hirano T, Toriyama Y, Iesato Y, et al. Changes in plasma vascular endothelial growth factor level after intravitreal injection of Bevacizumab, Aflibercept, or Ranibizumab for diabetic macular edema[J]. Retina, 2018, 38: 1801-1808.
[8]
Ahuja S, Saxena S, AkdumanL, et al. Serum vascular endothelial growth factor is a biomolecular biomarker of severity of diabetic retinopathy[J]. Int J Retina Vitreous.2019, 5: 29.
[9]
Abu-Yaghi NE, AbuTarboush NM, Abojaradeh AM, et al. Relationship between Serum Vascular Endothelial Growth Factor Levels and StAGE of Diabetic Retinopathy and Other Biomarkers[J]. J Ophthalmol, 2020: 1-7..
[10]
Majidreza S, Alizadeh M, Saeid A. The tear VEGF and IGFBP3 in healthy and diabetic retinopathy[J]. International Journal of Diabetes in Developing Countries, 2019, 40: 93-98.
[11]
Midena E, Frizziero L, Midena G, et al. Intraocular fluid biomarkers(liquid biopsy) in human diabetic retinopathy[J].Graefes Arch Clin Exp Ophthalmol.2021, 259(12): 3549-3560.
[12]
Wang JY, Kwon JS, Hsu SM, et al. Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform[J]. Lab Chip, 2020, 20(2): 356-362.
[13]
Bonfiglio V, Platania CBM, Lazzara F, et al. TGF-β Serum Levels in Diabetic Retinopathy Patients and the Role of Anti-VEGF Therapy[J].Int J Mol Sci, 2020, 21(24): 9558.
[14]
Karbasforooshan H, Karimi G. The role of SIRT1 in diabetic retinopathy. Biomed Pharmacother[J]. 2018, 97: 190-194.
[15]
Maisto R, Trotta MC, Petrillo F, et al. Resolvin D1 Modulates the Intracellular VEGF-Related miRNAs of Retinal Photoreceptors Challenged With High Glucose[J]. Front Pharmacol, 2020, 11: 235.
[16]
张浩,方新梅,张玛丽,等. 微小核糖核酸7641/沉默信息调节因子1途径参与高糖诱导的人视网膜微血管内皮细胞损伤的研究[J].中国糖尿病杂志202331(11):845-849.
[17]
Shan L, Zhang H, Han Y, et al. Expression and mechanism of microRNA 195 in diabetic retinopathy[J]. Endocr J, 2022, 69(5): 529-537.
[18]
Pan Q, Gao Z, Zhu C, et al. Overexpression of histone deacetylase SIRT1 exerts an antiangiogenic role in diabetic retinopathy via miR-20a elevation and YAP/HIF1α/VEGFA depletion[J]. Am J Physiol Endocrinol Metab, 2020, 319(5): 932-943.
[19]
Ko GY, Yu F, Bayless KJ, et al. MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression? [J]. Int J Mol Sci, 2022, 23(20): 12099.
[20]
Yin C, Lin X, Sun Y, et al. Dysregulation of miR-210 is involved in the development of diabetic retinopathy and serves a regulatory role in retinal vascular endothelial cell proliferation[J]. Eur J Med Res, 2020, 25(1): 20.
[21]
Liang Z, Gao KP, Wang YX, et al. RNA sequencing identified specific circulating miRNA biomarkers for early detection of diabetes retinopathy[J]. Am J Physiol Endocrinol Metab, 2018, 315(3): 374-385.
[22]
Santovito D, Toto L, De Nardis V, et al. Plasma microRNA signature associated with retinopathy in patients with type 2 diabetes[J]. Sci Rep, 2021, 11(1): 4136.
[23]
Kot A, Kaczmarek R. Exosomal miRNA Profiling in Vitreous Humor in Proliferative Diabetic Retinopathy[J]. Cells, 2022, 12(1): 123.
[24]
Saleh AA, El-Hefnawy SM, Kasemy ZA, et al. Mi-RNA-93 and Mi-RNA-152 in the Diagnosis of Type 2 Diabetes and Diabetic Retinopathy[J].Br J Biomed Sci, 2022, 79: 10192.
[25]
Ma L, Wen Y, Li Z, et al. Circulating MicroRNAs as Potential Diagnostic Biomarkers for Diabetic Retinopathy: A Meta-Analysis[J]. Front Endocrinol (Lausanne), 2022, 13: 929924.
[26]
Jenkins HN, Rivera-Gonzalez O, Gibert Y, et al. Endothelin-1 in the pathophysiology of obesity and insulin resistance[J]. Obes Rev, 2020, 21(12): 13086.
[27]
Kostov K. The Causal Relationship between Endothelin-1 and Hypertension: Focusing on Endothelial Dysfunction, Arterial Stiffness, Vascular Remodeling, and Blood Pressure Regulation[J]. Life (Basel), 2021, 11(9): 986.
[28]
Cheung SS, Leung JW, Lam AK, et al. Selective over-expression of endothelin-1 in endothelial cells exacerbates inner retinal edema and neuronal death in ischemic retina[J].PLoS One, 2011, 6(10): 26184.
[29]
Chen YL, Rosa RH, Kuo L, et al. Hyperglycemia Augments Endothelin-1-Induced Constriction of Human Retinal Venules[J]. Transl Vis Sci Technol, 2020, 9(9): 1.
[30]
Bogdanov P, Simó-Servat O, Sampedro J, et al. Topical Administration of Bosentan Prevents Retinal Neurodegeneration in Experimental Diabetes[J]. Int J Mol Sc i, 2018, 19(11): 3578.
[31]
Kang HM, Hasanuzzaman M, Kim SW, et al.Elevated aqueous endothelin-1 concentrations in advanced diabetic retinopathy[J]. PLoS One, 2022, 17(5): 0268353.
[32]
Alrashdi SF, Deliyanti D, Wilkinson-Berka JL. Intravitreal administration of endothelin type A receptor or endothelin type B receptor antagonists attenuates hypertensive and diabetic retinopathy in rats[J]. Exp Eye Res, 2018, 176: 1-9.
[33]
Shen CY, Lu CH, Wu CH, et al. The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases[J]. Molecules, 2020, 25(23): 5591.
[34]
Pal R, Bhadada SK. AGE accumulation with vascular complications, glycemic control and metabolic syndrome: A narrative review[J]. Bone, 2023, 176: 116884.
[35]
Hanaguri J, Yokota H, Kushiyama A, et al. Beneficial Effect of Long-Term Administration of Supplement With Trapa BispinosaRoxb. and Lutein on Retinal Neurovascular Coupling in Type 2 Diabetic Mice[J]. Front Physiol, 2022, 13: 788034.
[36]
Zhang Q, Wang Y, Fu L. Dietary advanced glycation end-products: Perspectives linking food processing with health implications[J]. Compr Rev Food Sci Food Saf, 2020, 19(5): 2559-2587.
[37]
Chung YR, Choi JA, Koh JY, et al. Ursodeoxycholic Acid Attenuates Endoplasmic Reticulum Stress-Related Retinal Pericyte Loss in Streptozotocin-Induced Diabetic Mice[J]. J Diabetes Res, 20172017: 1-10.
[38]
Osawa S, Katakami N, SatoI, et al. Skin autofluorescence is associated with vascular complications in patients with type 2 diabetes[J]. J Diabetes Complications, 2018, 32(9): 839-844.
[39]
Sirman YV, SavytskyiI V. Study of endothelial dysfunction and asymmetric dimethylarginine levels[J]. Journal of Education Health and Sport, 2019, 9: 395-412.
[40]
Peters KS, Rivera E, Warden C, et al. Plasma Arginine and Citrulline are Elevated in Diabetic Retinopathy[J]. Am J Ophthalmol, 2022, 235: 154-162.
[41]
Celik M, Cerrah S, Arabul M, et al. Relation of asymmetric dimethylarginine levels to macrovascular disease and inflammation markers in type 2 diabetic patients[J]. J Diabetes Res, 2014, 2014: 1-6.
[42]
Guo X, Xing Y, Jin W. Role of ADMA in the pathogenesis of microvascular complications in type 2 diabetes mellitus[J]. Front Endocrinol (Lausanne), 2023, 14: 1183586.
[43]
Wieczór R, Wieczór AM, Kulwas A, et al. ADMA (asymmetric dimethylarginine)and angiogenic potential in patients with type 2 diabetes and prediabetes[J]. Exp Biol Med (Maywood), 2021, 246(2): 153-162.
[44]
Du MR, Yan L, Li NS, et al. Asymmetric dimethylarginine contributes to retinal neovascularization of diabetic retinopathy through EphrinB2 pathway[J]. VasculPharmacol, 2018, 108: 46-56.
[45]
Aydoĝan S, Dilli D, Kabata EU, et al. The Serum Levels of Asymmetric Dimethylarginine, Vascular Endothelial Growth Factor, and Insulin-Like Growth Factor-1 in Preterms with Retinopathy of Prematurity[J]. Fetal Pediatr Pathol, 2022 , 41(4): 634-639.
[46]
Cvitkovic K, Sesar A, Sesar I, et al. Concentrations of Selected Cytokines and Vascular Endothelial Growth Factor in Aqueous Humor and Serum of Diabetic Patients[J]. Semin Ophthalmol, 2020, 35(2): 126-133.
[47]
Batsos G, Christodoulou E, Christou EE, et al. Vitreous inflammatory and angiogenic factors on patients with proliferative diabetic retinopathy or diabetic macular edema: the role of Lipocalin2[J]. BMC Ophthalmol, 2022 , 22(1): 496.
[48]
Obadâ O, Pantalon AD, Rusu-Zota G, et al. Aqueous Humor Cytokines in Non-Proliferative Diabetic Retinopathy[J]. Medicina (Kaunas), 2022, 58(7): 909.
[49]
Tan W, Zou JL, Yoshida S, et al. Increased vitreal levels of interleukin-10 in diabetic retinopathy: a Meta-analysis. Int J Ophthalmol, 2020, 13(9): 1477-1483.
[50]
Zhang H, Liang L, Huang R, et al. Comparison of inflammatory cytokines levels in the aqueous humor with diabetic retinopathy[J]. Int Ophthalmol, 2020, 40(10): 2763-2769.
[51]
Zeng L, Ma W, Shi L, et al. Poly(lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy[J]. Int J Nanomedicine, 2019, 14: 6357-6369.
[52]
Wang Y, Zhai WL, Yang YW. Association between NDRG2/IL-6/STAT3 signaling pathway and diabetic retinopathy in rats[J]. Eur Rev Med Pharmacol Sci, 2020 , 24(7): 3476-3484.
[53]
Stahel M, Becker M, Graf N, et al. SYSTEMIC INTERLEUKIN 1β INHIBITION IN PROLIFERATIVE DIABETIC RETINOPATHY: A Prospective Open-Label Study Using Canakinumab[J]. Retina, 2016 , 36(2): 385-91.
[54]
齐丽莉,马清光,杨艳秋等.β2-MG、TNF-α联合检测在2型糖尿病视网膜病变早期诊断中的临床价值[J]. 中国老年学杂志202343(13):3159-3162.
[55]
Yang F, Zhang H, Yu X, et al. TNFAIP8 overexpression aggravates retinal pathophysiological features of diabetic retinopathy[J]. Exp Eye Res, 2023, 234: 109572.
[56]
Li L, Wu X, He L, et al. Serum levels of SOCS6 are decreased in diabetic retinopathy and are related to severity of the disease[J]. Adv Clin Exp Med, 2023, 32(8): 873-880.
[57]
Sfikakis PP, Grigoropoulos V, Emfietzoglou I, et al. Infliximab for diabetic macular edema refractory to laser photocoagulation: a randomized, double-blind, placebo-controlled, crossover, 32-week study[J]. Diabetes Care, 2010, 33(7): 1523-1528.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 申成凯, 孟飞, 刘坤, 朱卫洁, 赵海军. 白介素-1β基因型与原发性冻结肩易感性的关联研究[J]. 中华关节外科杂志(电子版), 2024, 18(01): 17-23.
[3] 暴静, 吴霞, 田雅萍, 尹钢. 维生素D3联合孟鲁司特钠治疗支气管哮喘对血清VEGF、TGF-β1及肺功能的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 63-67.
[4] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[5] 朱丽臻, 范文萃, 李梦瑶, 李丽, 张月, 石艳红. 外周血NLRP3、IL-18和IL-1β在肺炎支原体肺炎患儿中的表达及检测意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 860-863.
[6] 朱迎, 赵征, 许达, 陆录, 殷保兵. 免疫检查点抑制剂治疗肝细胞癌的进展与展望[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 5-10.
[7] 杨金涓, 夏建平. 糖尿病性黄斑水肿患者基线房水细胞因子水平评估血管内皮生长因子疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 350-355.
[8] 李新星, 方晏红, 陈会振, 张蓝月, 刘涵. 维生素D与眼病关系的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 366-370.
[9] 刘涵, 方晏红, 张蓝月, 李新星. 血脂异常与糖尿病视网膜病变的相关性研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 301-305.
[10] 黄婵妍, 张妍春, 郑嘉敏, 王鑫晨. 循环及眼生物液标志物在早期糖尿病视网膜病变筛查和风险分层管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 306-310.
[11] 张萌, 喻中华. 阿尔茨海默病患者血清脂联素、Lp-PLA2、IL-17的表达及与认知功能的相关性分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 358-363.
[12] 刘萍, 刘占举, 张萃. 英夫利西单抗治疗克罗恩病的临床疗效及影响因素[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 28-34.
[13] 宋建波, 韩俊伟, 周敏, 温红萍. 血管内皮生长因子受体酪氨酸激酶抑制剂致蛋白尿风险的荟萃分析[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1297-1303.
[14] 邬秋俊, 向茜. 甘油三酯-葡萄糖指数与2型糖尿病微血管并发症相关性的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1109-1112.
[15] 计超, 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠T细胞亚群和炎症因子的影响[J]. 中华诊断学电子杂志, 2024, 12(01): 50-56.
阅读次数
全文


摘要