[1] |
Teo ZL, Tham YC, Yu M, et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591.
|
[2] |
刘涵,方晏红,张蓝月,等. 血脂异常与糖尿病视网膜病变的相关性研究进展[J]. 中华眼科医学杂志(电子版),2023,13(5):301-305.
|
[3] |
Nawaz IM, Rezzola S, Cancarini A, et al. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications[J]. Prog Retin Eye Res, 2019, 72: 100756.
|
[5] |
Arrigo A, Aragona E, Bandello F. VEGF-targeting drugs for the treatment of retinal neovascularization in diabetic retinopathy[J]. Ann Med, 2022, 54(1): 1089-1111.
|
|
Wang X, Bove AM, Simone G, et al. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role[J].Front Cell Dev Biol, 2020, 8: 599281.
|
[6] |
Bucolo C, Barbieri A, ViganòI, et al. Short-and Long-Term Expression of Vegf: A Temporal Regulation of a Key Factor in Diabetic Retinopathy[J]. Front Pharmacol, 2021, 12: 707909.
|
[7] |
Hirano T, Toriyama Y, Iesato Y, et al. Changes in plasma vascular endothelial growth factor level after intravitreal injection of Bevacizumab, Aflibercept, or Ranibizumab for diabetic macular edema[J]. Retina, 2018, 38: 1801-1808.
|
[8] |
Ahuja S, Saxena S, AkdumanL, et al. Serum vascular endothelial growth factor is a biomolecular biomarker of severity of diabetic retinopathy[J]. Int J Retina Vitreous.2019, 5: 29.
|
[9] |
Abu-Yaghi NE, AbuTarboush NM, Abojaradeh AM, et al. Relationship between Serum Vascular Endothelial Growth Factor Levels and StAGE of Diabetic Retinopathy and Other Biomarkers[J]. J Ophthalmol, 2020: 1-7..
|
[10] |
Majidreza S, Alizadeh M, Saeid A. The tear VEGF and IGFBP3 in healthy and diabetic retinopathy[J]. International Journal of Diabetes in Developing Countries, 2019, 40: 93-98.
|
[11] |
Midena E, Frizziero L, Midena G, et al. Intraocular fluid biomarkers(liquid biopsy) in human diabetic retinopathy[J].Graefes Arch Clin Exp Ophthalmol.2021, 259(12): 3549-3560.
|
[12] |
Wang JY, Kwon JS, Hsu SM, et al. Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform[J]. Lab Chip, 2020, 20(2): 356-362.
|
[13] |
Bonfiglio V, Platania CBM, Lazzara F, et al. TGF-β Serum Levels in Diabetic Retinopathy Patients and the Role of Anti-VEGF Therapy[J].Int J Mol Sci, 2020, 21(24): 9558.
|
[14] |
Karbasforooshan H, Karimi G. The role of SIRT1 in diabetic retinopathy. Biomed Pharmacother[J]. 2018, 97: 190-194.
|
[15] |
Maisto R, Trotta MC, Petrillo F, et al. Resolvin D1 Modulates the Intracellular VEGF-Related miRNAs of Retinal Photoreceptors Challenged With High Glucose[J]. Front Pharmacol, 2020, 11: 235.
|
[16] |
张浩,方新梅,张玛丽,等. 微小核糖核酸7641/沉默信息调节因子1途径参与高糖诱导的人视网膜微血管内皮细胞损伤的研究[J].中国糖尿病杂志,2023,31(11):845-849.
|
[17] |
Shan L, Zhang H, Han Y, et al. Expression and mechanism of microRNA 195 in diabetic retinopathy[J]. Endocr J, 2022, 69(5): 529-537.
|
[18] |
Pan Q, Gao Z, Zhu C, et al. Overexpression of histone deacetylase SIRT1 exerts an antiangiogenic role in diabetic retinopathy via miR-20a elevation and YAP/HIF1α/VEGFA depletion[J]. Am J Physiol Endocrinol Metab, 2020, 319(5): 932-943.
|
[19] |
Ko GY, Yu F, Bayless KJ, et al. MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression? [J]. Int J Mol Sci, 2022, 23(20): 12099.
|
[20] |
Yin C, Lin X, Sun Y, et al. Dysregulation of miR-210 is involved in the development of diabetic retinopathy and serves a regulatory role in retinal vascular endothelial cell proliferation[J]. Eur J Med Res, 2020, 25(1): 20.
|
[21] |
Liang Z, Gao KP, Wang YX, et al. RNA sequencing identified specific circulating miRNA biomarkers for early detection of diabetes retinopathy[J]. Am J Physiol Endocrinol Metab, 2018, 315(3): 374-385.
|
[22] |
Santovito D, Toto L, De Nardis V, et al. Plasma microRNA signature associated with retinopathy in patients with type 2 diabetes[J]. Sci Rep, 2021, 11(1): 4136.
|
[23] |
Kot A, Kaczmarek R. Exosomal miRNA Profiling in Vitreous Humor in Proliferative Diabetic Retinopathy[J]. Cells, 2022, 12(1): 123.
|
[24] |
Saleh AA, El-Hefnawy SM, Kasemy ZA, et al. Mi-RNA-93 and Mi-RNA-152 in the Diagnosis of Type 2 Diabetes and Diabetic Retinopathy[J].Br J Biomed Sci, 2022, 79: 10192.
|
[25] |
Ma L, Wen Y, Li Z, et al. Circulating MicroRNAs as Potential Diagnostic Biomarkers for Diabetic Retinopathy: A Meta-Analysis[J]. Front Endocrinol (Lausanne), 2022, 13: 929924.
|
[26] |
Jenkins HN, Rivera-Gonzalez O, Gibert Y, et al. Endothelin-1 in the pathophysiology of obesity and insulin resistance[J]. Obes Rev, 2020, 21(12): 13086.
|
[27] |
Kostov K. The Causal Relationship between Endothelin-1 and Hypertension: Focusing on Endothelial Dysfunction, Arterial Stiffness, Vascular Remodeling, and Blood Pressure Regulation[J]. Life (Basel), 2021, 11(9): 986.
|
[28] |
Cheung SS, Leung JW, Lam AK, et al. Selective over-expression of endothelin-1 in endothelial cells exacerbates inner retinal edema and neuronal death in ischemic retina[J].PLoS One, 2011, 6(10): 26184.
|
[29] |
Chen YL, Rosa RH, Kuo L, et al. Hyperglycemia Augments Endothelin-1-Induced Constriction of Human Retinal Venules[J]. Transl Vis Sci Technol, 2020, 9(9): 1.
|
[30] |
Bogdanov P, Simó-Servat O, Sampedro J, et al. Topical Administration of Bosentan Prevents Retinal Neurodegeneration in Experimental Diabetes[J]. Int J Mol Sc i, 2018, 19(11): 3578.
|
[31] |
Kang HM, Hasanuzzaman M, Kim SW, et al.Elevated aqueous endothelin-1 concentrations in advanced diabetic retinopathy[J]. PLoS One, 2022, 17(5): 0268353.
|
[32] |
Alrashdi SF, Deliyanti D, Wilkinson-Berka JL. Intravitreal administration of endothelin type A receptor or endothelin type B receptor antagonists attenuates hypertensive and diabetic retinopathy in rats[J]. Exp Eye Res, 2018, 176: 1-9.
|
[33] |
Shen CY, Lu CH, Wu CH, et al. The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases[J]. Molecules, 2020, 25(23): 5591.
|
[34] |
Pal R, Bhadada SK. AGE accumulation with vascular complications, glycemic control and metabolic syndrome: A narrative review[J]. Bone, 2023, 176: 116884.
|
[35] |
Hanaguri J, Yokota H, Kushiyama A, et al. Beneficial Effect of Long-Term Administration of Supplement With Trapa BispinosaRoxb. and Lutein on Retinal Neurovascular Coupling in Type 2 Diabetic Mice[J]. Front Physiol, 2022, 13: 788034.
|
[36] |
Zhang Q, Wang Y, Fu L. Dietary advanced glycation end-products: Perspectives linking food processing with health implications[J]. Compr Rev Food Sci Food Saf, 2020, 19(5): 2559-2587.
|
[37] |
Chung YR, Choi JA, Koh JY, et al. Ursodeoxycholic Acid Attenuates Endoplasmic Reticulum Stress-Related Retinal Pericyte Loss in Streptozotocin-Induced Diabetic Mice[J]. J Diabetes Res, 2017;2017: 1-10.
|
[38] |
Osawa S, Katakami N, SatoI, et al. Skin autofluorescence is associated with vascular complications in patients with type 2 diabetes[J]. J Diabetes Complications, 2018, 32(9): 839-844.
|
[39] |
Sirman YV, SavytskyiI V. Study of endothelial dysfunction and asymmetric dimethylarginine levels[J]. Journal of Education Health and Sport, 2019, 9: 395-412.
|
[40] |
Peters KS, Rivera E, Warden C, et al. Plasma Arginine and Citrulline are Elevated in Diabetic Retinopathy[J]. Am J Ophthalmol, 2022, 235: 154-162.
|
[41] |
Celik M, Cerrah S, Arabul M, et al. Relation of asymmetric dimethylarginine levels to macrovascular disease and inflammation markers in type 2 diabetic patients[J]. J Diabetes Res, 2014, 2014: 1-6.
|
[42] |
Guo X, Xing Y, Jin W. Role of ADMA in the pathogenesis of microvascular complications in type 2 diabetes mellitus[J]. Front Endocrinol (Lausanne), 2023, 14: 1183586.
|
[43] |
Wieczór R, Wieczór AM, Kulwas A, et al. ADMA (asymmetric dimethylarginine)and angiogenic potential in patients with type 2 diabetes and prediabetes[J]. Exp Biol Med (Maywood), 2021, 246(2): 153-162.
|
[44] |
Du MR, Yan L, Li NS, et al. Asymmetric dimethylarginine contributes to retinal neovascularization of diabetic retinopathy through EphrinB2 pathway[J]. VasculPharmacol, 2018, 108: 46-56.
|
[45] |
Aydoĝan S, Dilli D, Kabata EU, et al. The Serum Levels of Asymmetric Dimethylarginine, Vascular Endothelial Growth Factor, and Insulin-Like Growth Factor-1 in Preterms with Retinopathy of Prematurity[J]. Fetal Pediatr Pathol, 2022 , 41(4): 634-639.
|
[46] |
Cvitkovic K, Sesar A, Sesar I, et al. Concentrations of Selected Cytokines and Vascular Endothelial Growth Factor in Aqueous Humor and Serum of Diabetic Patients[J]. Semin Ophthalmol, 2020, 35(2): 126-133.
|
[47] |
Batsos G, Christodoulou E, Christou EE, et al. Vitreous inflammatory and angiogenic factors on patients with proliferative diabetic retinopathy or diabetic macular edema: the role of Lipocalin2[J]. BMC Ophthalmol, 2022 , 22(1): 496.
|
[48] |
Obadâ O, Pantalon AD, Rusu-Zota G, et al. Aqueous Humor Cytokines in Non-Proliferative Diabetic Retinopathy[J]. Medicina (Kaunas), 2022, 58(7): 909.
|
[49] |
Tan W, Zou JL, Yoshida S, et al. Increased vitreal levels of interleukin-10 in diabetic retinopathy: a Meta-analysis. Int J Ophthalmol, 2020, 13(9): 1477-1483.
|
[50] |
Zhang H, Liang L, Huang R, et al. Comparison of inflammatory cytokines levels in the aqueous humor with diabetic retinopathy[J]. Int Ophthalmol, 2020, 40(10): 2763-2769.
|
[51] |
Zeng L, Ma W, Shi L, et al. Poly(lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy[J]. Int J Nanomedicine, 2019, 14: 6357-6369.
|
[52] |
Wang Y, Zhai WL, Yang YW. Association between NDRG2/IL-6/STAT3 signaling pathway and diabetic retinopathy in rats[J]. Eur Rev Med Pharmacol Sci, 2020 , 24(7): 3476-3484.
|
[53] |
Stahel M, Becker M, Graf N, et al. SYSTEMIC INTERLEUKIN 1β INHIBITION IN PROLIFERATIVE DIABETIC RETINOPATHY: A Prospective Open-Label Study Using Canakinumab[J]. Retina, 2016 , 36(2): 385-91.
|
[54] |
齐丽莉,马清光,杨艳秋等.β2-MG、TNF-α联合检测在2型糖尿病视网膜病变早期诊断中的临床价值[J]. 中国老年学杂志,2023,43(13):3159-3162.
|
[55] |
Yang F, Zhang H, Yu X, et al. TNFAIP8 overexpression aggravates retinal pathophysiological features of diabetic retinopathy[J]. Exp Eye Res, 2023, 234: 109572.
|
[56] |
Li L, Wu X, He L, et al. Serum levels of SOCS6 are decreased in diabetic retinopathy and are related to severity of the disease[J]. Adv Clin Exp Med, 2023, 32(8): 873-880.
|
[57] |
Sfikakis PP, Grigoropoulos V, Emfietzoglou I, et al. Infliximab for diabetic macular edema refractory to laser photocoagulation: a randomized, double-blind, placebo-controlled, crossover, 32-week study[J]. Diabetes Care, 2010, 33(7): 1523-1528.
|