[1] |
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591.
|
[2] |
Safi H, Safi S, Hafezi-Moghadam A, et al. Early detection of diabetic retinopathy[J]. Surv Ophthalmol, 2018, 63(5): 601-608.
|
[3] |
Vujosevic S, Aldington SJ, Silva P, et al. Screening for diabetic retinopathy: new perspectives and challenges[J]. Lancet Diabetes Endo, 2020, 8(4): 337-347.
|
[4] |
McAuley AK, Sanfilippo PG, Hewitt AW, et al. Vitreous biomarkers in diabetic retinopathy: a systematic review and meta-analysis[J]. J Diabetes Complicat, 2014, 28(3): 419-425.
|
[5] |
Frudd K, Sivaprasad S, Raman R, et al. Diagnostic circulating biomarkers to detect vision——threatening diabetic retinopathy: Potential screening tool of the future?[J]. Acta Ophthalmologica, 2022, 100(3): 648-668.
|
[6] |
Fong PY, Shih KC, Lam PY, et al. Role of tear film biomarkers in the diagnosis and management of dry eye disease[J]. Taiwan J Ophthalmol, 2019, 9(3): 150-159.
|
[7] |
López-Contreras AK, Martínez-Ruiz MG, Olvera-Montaño C, et al. Importance of the use of oxidative stress biomarkers and inflammatory profile in aqueous and vitreous humor in diabetic retinopathy[J]. Antioxidants, 2020, 9(9): 891.
|
[8] |
苗恒,赵明威. 眼内液标本采集和检测技术[J]. 中华眼科杂志,2020,56(4):313-317.
|
[9] |
Wu F, Phone A, Lamy R, et al. Correlation of aqueous, vitreous, and plasma cytokine levels in patients with proliferative diabetic retinopathy[J]. Invest Ophth Vis Sci, 2020, 61(2): 26-26.
|
[10] |
Quek DQY, He F, Sultana R, et al. Novel serum and urinary metabolites associated with diabetic retinopathy in three Asian cohorts[J]. Metabolites, 2021, PMID: 34564429.
|
[11] |
Abramoff MD, Fort PE, Han IC, et al. Approach for a clinically useful comprehensive classification of vascular and neural aspects of diabetic retinal disease[J]. Invest Ophth Vis Sci, 2018, 59(1): 519-527.
|
[12] |
Xu C, Wu Y, Liu G, et al. Relationship between homocysteine level and diabetic retinopathy: a systematic review and meta-analysis[J]. Diagn Pathol, 2014, 9(1): 1-9.
|
[13] |
Gong D, Fang L, Cai Y, et al. Development and evaluation of a risk prediction model for diabetes mellitus type 2 patients with vision-threatening diabetic retinopathy[J]. Front Endocrinol, 2023, PMID: 37693352.
|
[14] |
Setareh J, Hoseinzade G, Khoundabi B, et al. Can the level of HbA1C predict diabetic retinopathy among type II diabetic patients?[J]. BMC ophthalmology, 2022, 22(1): 1-8.
|
[15] |
Schreur V, van Asten F, Ng H, et al. Risk factors for development and progression of diabetic retinopathy in Dutch patients with type 1 diabetes mellitus[J]. Acta Ophthalmologica, 2018, 96(5): 459-464.
|
[16] |
Matuszewski W, Stefanowicz-Rutkowska MM, Szychlińska M, et al. Differences in risk factors for diabetic retinopathy in type 1 and type 2 diabetes mellitus patients in north-east Poland[J]. Medicina, 2020, PMID: 32295214.
|
[17] |
Choudhuri S, Dutta D, Sen A, et al. Role of N-epsilon-carboxy methyl lysine, advanced glycation end products and reactive oxygen species for the development of nonproliferative and proliferative retinopathy in type 2 diabetes mellitus[J]. Mol Vis, 2013, 19(1): 100-113.
|
[18] |
Monnier VM, Sell DR, Gao X, et al. Plasma advanced glycation end products and the subsequent risk of microvascular complications in type 1 diabetes in the DCCT/EDIC[J]. BMJ Open Diabetes Research and Care, 2022, PMID: 35058313.
|
[19] |
Yu L, Chen X, Qin G, et al. Tear film function in type 2 diabetic patients with retinopathy[J]. Ophthalmologica, 2008, 222(4): 284-291.
|
[20] |
Mishra N, Saxena S, Shukla RK, et al. Association of serum Nε-Carboxy methyl lysine with severity of diabetic retinopathy[J]. J Diabetes Complicat, 2016, 30(3): 511-517.
|
[21] |
Kerkeni M, Saïdi A, Bouzidi H, et al. Elevated serum levels of AGEs, sRAGE, and pentosidine in Tunisian patients with severity of diabetic retinopathy[J]. Microvasc Res, 2012, 84(3):378-383.
|
[22] |
Ng ZX, Chua KH, Iqbal T, et al. Soluble receptor for advanced glycation end-product (sRAGE)/pentosidine ratio: a potential risk factor determinant for type 2 diabetic retinopathy[J]. Int J Mol Sci, 2013, 14(4): 7480-7491.
|
[23] |
Ahuja S, Saxena S, Akduman L, et al. Serum vascular endothelial growth factor is a biomolecular biomarker of severity of diabetic retinopathy[J]. Int J Retina Vitreous, 2019, 5: 1-6.
|
[24] |
Jain A, Saxena S, Khanna VK, et al. Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus[J]. Mol Vis, 2013, 19(8): 1760-1968.
|
[25] |
Matsuyama K, Ogata N, Matsuoka M, et al. Relationship between pigment epithelium-derived factor (PEDF) and renal function in patients with diabetic retinopathy[J]. Mol Vis, 2008, 14(5):992-996.
|
[26] |
Zuo J, Lan Y, Hu H, et al. Metabolomics-based multidimensional network biomarkers for diabetic retinopathy identification in patients with type 2 diabetes mellitus[J]. BMJ Open Diabetes Res Care, 2021, PMID: 33593748.
|
[27] |
Khaloo P, Qahremani R, Rabizadeh S, et al. Nitric oxide and TNF-alpha are correlates of diabetic retinopathy independent of hs-CRP and HbA1c[J]. Endocrine, 2020, 69(3): 536-541.
|
[28] |
Curovic VR, Suvitaival T, Mattila I, et al. Circulating metabolites and lipids are associated to diabetic retinopathy in individuals with type 1 diabetes[J]. Diabetes, 2020, 69(10): 2217-2226.
|
[29] |
Shen J, Zhang L, Wang Y, et al. Beneficial actions of essential fatty acids in streptozotocin-induced type 1 diabetes mellitus[J]. Frontiers in Nutrition, 2022, PMID: 35669071.
|
[30] |
Zhu XR, Yang F, Lu J, et al. Plasma metabolomic profiling of proliferative diabetic retinopathy[J]. Nutr Metab, 2019, 16(1): 1-11.
|
[31] |
Welsh P, Rankin N, Li Q, et al. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: results from the advance trial[J]. Diabetologia, 2018, 61(5): 1581-1591.
|
[32] |
Dong N, Shi H, Xu B, et al. Increased plasma S100A12 levels are associated with diabetic retinopathy and prognostic biomarkers of macrovascular events in type 2 diabetic patients[J]. Invest Ophth Vis Sci, 2015, 56(8): 4177-4185.
|
[33] |
Hamano K, Nakadaira I, Suzuki J, et al. N-terminal fragment of probrain natriuretic peptide is associated with diabetes microvascular complications in type 2 diabetes[J]. Vasc Health Risk Manag, 2014,10(1): 585-589.
|
[34] |
Hainsworth DP, Gangula A, Ghoshdastidar S, et al. Diabetic retinopathy screening using a gold nanoparticle-based paper strip assay for the at-home detection of the urinary biomarker 8-hydroxy-2′-deoxyguanosine[J]. Am Ophthalmol Mol, 2020, 213(5): 306-319.
|
[35] |
Awata T, Yamashita H, Kurihara S, et al. A genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA[J]. PLos One, 2014, 9(11): 1-9.
|
[36] |
Burdon KP, Fogarty RD, Shen W, et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene[J]. Diabetologia, 2015, 58(7): 2288-2297.
|
[37] |
Pollack S, Igo RP, Jensen RA, et al. Multiethnic genome-wide association study of diabetic retinopathy using liability threshold modeling of duration of diabetes and glycemic control[J]. Diabetes, 2019, 68(2): 441-456.
|
[38] |
Yu X, Rong S. Genome-wide associations and confirmatory meta-analyses in diabetic retinopathy[J]. Genes, 2023, 14(3): 653-665.
|
[39] |
Jian Q, Wu Y, Zhang F. Metabolomics in diabetic retinopathy: from potential biomarkers to molecular basis of oxidative stress[J]. Cells, 2022, 11(19): 3005-3024.
|
[40] |
Patel C, Rojas M, Narayanan SP, et al. Arginase as a mediator of diabetic retinopathy[J]. Front Immunol, 2013, 4(1): 173-184.
|
[41] |
Sharma R, Gupta A, Thungapathra M, et al. Telomere mean length in patients with diabetic retinopathy[J]. Sci Rep, 2015, 5(1): 1-6.
|
[42] |
Mishra M, Lillvis J, Seyoum B, et al. Peripheral blood mitochondrial DNA damage as a potential noninvasive biomarker of diabetic retinopathy[J].Invest Ophth Vis Sci, 2016, 57(10): 4035-4044.
|
[43] |
Xiong F, Du X, Hu J, et al. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis[J]. Curr Eye Res, 2014, 39(7): 720-729.
|
[44] |
Zampetaki A, Willeit P, Burr S, et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes[J]. Diabetes, 2016, 65(1): 216-227.
|
[45] |
Kim K, Kim SJ, Han D, et al. Verification of multimarkers for detection of early stage diabetic retinopathy using multiple reaction monitoring[J]. J Proteome Res, 2013, 12(3): 1078-1089.
|
[46] |
Liu YP, Hu SW, Wu ZF, et al. Proteomic analysis of human serum from diabetic retinopathy[J]. Int J Opthalmol-Chi, 2011, 4(6): 616-622.
|
[47] |
Torok Z, Peto T, Csosz E, et al. Tear fluid proteomics multimarkers for diabetic retinopathy screening[J]. Bmc Ophthalmol, 2013, 13(1): 1-8.
|
[48] |
Kim HJ, Kim PK, Yoo HS, et al. Comparison of tear proteins between healthy and early diabetic retinopathy patients[J]. Clin Biochem, 2012, 45(1-2): 60-67.
|
[49] |
Yamada M, Mochizuki H, Kawai M, et al. Decreased tear lipocalinconcentration in patients with meibomian gland dysfunction[J]. Br J Ophthalmol, 2005, 89: 803-805.
|
[50] |
Jin H, Zhu B, Liu X, et al. Metabolic characterization of diabetic retinopathy: An 1H-NMR-based metabolomic approach using human aqueous humor[J]. J Pharmaceut Biomed, 2019, 174(11): 414-421.
|
[51] |
Tamhane M, Cabrera-Ghayouri S, Abelian G, et al. Review of biomarkers in ocular matrices: challenges and opportunities[J]. Pharm Res, 2019, 36(3): 40-75.
|
[52] |
Xuan Q, Ouyang Y, Wang Y, et al. Multiplatform metabolomics reveals novel serum metabolite biomarkers in diabetic retinopathy subjects[J].Adv Sci, 2020, 7(22): 1-10.
|
[53] |
Rhee SY, Jung ES, Park HM, et al. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy[J]. Metabolomics, 2018, 14(2): 1-10.
|
[54] |
Lin HT, Cheng ML, Lo CJ, et al. 1H nuclear magnetic resonance (NMR)-based cerebrospinal fluid and plasma metabolomic analysis in type 2 diabetic patients and risk prediction for diabetic microangiopathy[J]. J Clin Med, 2019, 8(6): 874-896.
|
[55] |
Haines NR, Manoharan N, Olson JL, et al. Metabolomics analysis of human vitreous in diabetic retinopathy and rhegmatogenous retinal detachment[J]. J Proteome Res, 2018, 17(7): 2421-2427.
|
[56] |
Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables[J]. Lancet Diabetes Endo, 2018, 6(5): 361-369.
|