切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (05) : 306 -310. doi: 10.3877/cma.j.issn.2095-2007.2023.05.010

综述

循环及眼生物液标志物在早期糖尿病视网膜病变筛查和风险分层管理中的研究进展
黄婵妍, 张妍春(), 郑嘉敏, 王鑫晨   
  1. 712000 咸阳,陕西中医药大学第一临床医学院中医系2021级硕士研究生
    710004 西安市人民医院(西安市第四医院)眼科 陕西省眼科医院糖尿病视网膜病变中心 西北大学附属人民医院 西安市眼底病研究所
  • 收稿日期:2023-08-31 出版日期:2023-10-28
  • 通信作者: 张妍春
  • 基金资助:
    陕西省重点研发计划项目(2021SF-162); 西安市科技计划重大研究项目(201805104YX12SF38(3)); 白求恩-朗沐科研发展专项基金项目(ⅡT)(BJ2020IIT001); Alcon资助项目(ⅡT#75019437)

Research progress of circulating and ocular biomarkers in screening and risk stratification and management of patients with early diabetic retinopathy

Chanyan Huang, Yanchun Zhang(), Jiamin Zheng, Xinchen Wang   

  1. Master′s degree 2021, Department of Chinese Medicine, First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712000, China
    Shaanxi Eye Hospital, Xi′an People′s Hospital (Xi′an Fourth Hospital), Diabetes Retinopathy Center of Shaanxi Provincial Eye Hospital, Affiliated People′s Hospital of Northwest University, Xi′an Ocular Fundus Disease Research Institute, Xi′an 710004, China
  • Received:2023-08-31 Published:2023-10-28
  • Corresponding author: Yanchun Zhang
引用本文:

黄婵妍, 张妍春, 郑嘉敏, 王鑫晨. 循环及眼生物液标志物在早期糖尿病视网膜病变筛查和风险分层管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 306-310.

Chanyan Huang, Yanchun Zhang, Jiamin Zheng, Xinchen Wang. Research progress of circulating and ocular biomarkers in screening and risk stratification and management of patients with early diabetic retinopathy[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(05): 306-310.

糖尿病视网膜病变(DR)是工作年龄成年人失明的主要原因,也是糖尿病常见的并发症之一。及时检测和靶向干预可有效地减少DR引起的视力损害。然而,DR早期缺乏典型症状,同时大范围长期眼底筛查又难度大,故导致DR的诊断和治疗延迟。本文中笔者就循环及眼生物液在早期糖尿病视网膜病变筛查和风险分层管理中的研究进展进行综述,旨在为其治疗和预防性干预提供参考。

Diabetic retinopathy ( DR ) is the leading cause of blindness in working-age adults and one of the most common complications of diabetes. Timely detection and targeted intervention can effectively reduce the visual impairment caused by DR. However, the lack of typical symptoms in the early stage and the difficulty of large-scale long-term fundus screening often delayed the diagnosis and treatment of DR. The progress of circulating and ocular biomarkers in screening and risk stratification and management of patients with early diabetic retinopathy were reviewed in this paper, aiming to provide the reference for therapies and preventive interventions.

[1]
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591.
[2]
Safi H, Safi S, Hafezi-Moghadam A, et al. Early detection of diabetic retinopathy[J]. Surv Ophthalmol, 2018, 63(5): 601-608.
[3]
Vujosevic S, Aldington SJ, Silva P, et al. Screening for diabetic retinopathy: new perspectives and challenges[J]. Lancet Diabetes Endo, 2020, 8(4): 337-347.
[4]
McAuley AK, Sanfilippo PG, Hewitt AW, et al. Vitreous biomarkers in diabetic retinopathy: a systematic review and meta-analysis[J]. J Diabetes Complicat, 2014, 28(3): 419-425.
[5]
Frudd K, Sivaprasad S, Raman R, et al. Diagnostic circulating biomarkers to detect vision——threatening diabetic retinopathy: Potential screening tool of the future?[J]. Acta Ophthalmologica, 2022, 100(3): 648-668.
[6]
Fong PY, Shih KC, Lam PY, et al. Role of tear film biomarkers in the diagnosis and management of dry eye disease[J]. Taiwan J Ophthalmol, 2019, 9(3): 150-159.
[7]
López-Contreras AK, Martínez-Ruiz MG, Olvera-Montaño C, et al. Importance of the use of oxidative stress biomarkers and inflammatory profile in aqueous and vitreous humor in diabetic retinopathy[J]. Antioxidants, 2020, 9(9): 891.
[8]
苗恒,赵明威. 眼内液标本采集和检测技术[J]. 中华眼科杂志202056(4):313-317.
[9]
Wu F, Phone A, Lamy R, et al. Correlation of aqueous, vitreous, and plasma cytokine levels in patients with proliferative diabetic retinopathy[J]. Invest Ophth Vis Sci, 2020, 61(2): 26-26.
[10]
Quek DQY, He F, Sultana R, et al. Novel serum and urinary metabolites associated with diabetic retinopathy in three Asian cohorts[J]. Metabolites, 2021, PMID: 34564429.
[11]
Abramoff MD, Fort PE, Han IC, et al. Approach for a clinically useful comprehensive classification of vascular and neural aspects of diabetic retinal disease[J]. Invest Ophth Vis Sci, 2018, 59(1): 519-527.
[12]
Xu C, Wu Y, Liu G, et al. Relationship between homocysteine level and diabetic retinopathy: a systematic review and meta-analysis[J]. Diagn Pathol, 2014, 9(1): 1-9.
[13]
Gong D, Fang L, Cai Y, et al. Development and evaluation of a risk prediction model for diabetes mellitus type 2 patients with vision-threatening diabetic retinopathy[J]. Front Endocrinol, 2023, PMID: 37693352.
[14]
Setareh J, Hoseinzade G, Khoundabi B, et al. Can the level of HbA1C predict diabetic retinopathy among type II diabetic patients?[J]. BMC ophthalmology, 2022, 22(1): 1-8.
[15]
Schreur V, van Asten F, Ng H, et al. Risk factors for development and progression of diabetic retinopathy in Dutch patients with type 1 diabetes mellitus[J]. Acta Ophthalmologica, 2018, 96(5): 459-464.
[16]
Matuszewski W, Stefanowicz-Rutkowska MM, Szychlińska M, et al. Differences in risk factors for diabetic retinopathy in type 1 and type 2 diabetes mellitus patients in north-east Poland[J]. Medicina, 2020, PMID: 32295214.
[17]
Choudhuri S, Dutta D, Sen A, et al. Role of N-epsilon-carboxy methyl lysine, advanced glycation end products and reactive oxygen species for the development of nonproliferative and proliferative retinopathy in type 2 diabetes mellitus[J]. Mol Vis, 2013, 19(1): 100-113.
[18]
Monnier VM, Sell DR, Gao X, et al. Plasma advanced glycation end products and the subsequent risk of microvascular complications in type 1 diabetes in the DCCT/EDIC[J]. BMJ Open Diabetes Research and Care, 2022, PMID: 35058313.
[19]
Yu L, Chen X, Qin G, et al. Tear film function in type 2 diabetic patients with retinopathy[J]. Ophthalmologica, 2008, 222(4): 284-291.
[20]
Mishra N, Saxena S, Shukla RK, et al. Association of serum Nε-Carboxy methyl lysine with severity of diabetic retinopathy[J]. J Diabetes Complicat, 2016, 30(3): 511-517.
[21]
Kerkeni M, Saïdi A, Bouzidi H, et al. Elevated serum levels of AGEs, sRAGE, and pentosidine in Tunisian patients with severity of diabetic retinopathy[J]. Microvasc Res, 2012, 84(3):378-383.
[22]
Ng ZX, Chua KH, Iqbal T, et al. Soluble receptor for advanced glycation end-product (sRAGE)/pentosidine ratio: a potential risk factor determinant for type 2 diabetic retinopathy[J]. Int J Mol Sci, 2013, 14(4): 7480-7491.
[23]
Ahuja S, Saxena S, Akduman L, et al. Serum vascular endothelial growth factor is a biomolecular biomarker of severity of diabetic retinopathy[J]. Int J Retina Vitreous, 2019, 5: 1-6.
[24]
Jain A, Saxena S, Khanna VK, et al. Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus[J]. Mol Vis, 2013, 19(8): 1760-1968.
[25]
Matsuyama K, Ogata N, Matsuoka M, et al. Relationship between pigment epithelium-derived factor (PEDF) and renal function in patients with diabetic retinopathy[J]. Mol Vis, 2008, 14(5):992-996.
[26]
Zuo J, Lan Y, Hu H, et al. Metabolomics-based multidimensional network biomarkers for diabetic retinopathy identification in patients with type 2 diabetes mellitus[J]. BMJ Open Diabetes Res Care, 2021, PMID: 33593748.
[27]
Khaloo P, Qahremani R, Rabizadeh S, et al. Nitric oxide and TNF-alpha are correlates of diabetic retinopathy independent of hs-CRP and HbA1c[J]. Endocrine, 2020, 69(3): 536-541.
[28]
Curovic VR, Suvitaival T, Mattila I, et al. Circulating metabolites and lipids are associated to diabetic retinopathy in individuals with type 1 diabetes[J]. Diabetes, 2020, 69(10): 2217-2226.
[29]
Shen J, Zhang L, Wang Y, et al. Beneficial actions of essential fatty acids in streptozotocin-induced type 1 diabetes mellitus[J]. Frontiers in Nutrition, 2022, PMID: 35669071.
[30]
Zhu XR, Yang F, Lu J, et al. Plasma metabolomic profiling of proliferative diabetic retinopathy[J]. Nutr Metab, 2019, 16(1): 1-11.
[31]
Welsh P, Rankin N, Li Q, et al. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: results from the advance trial[J]. Diabetologia, 2018, 61(5): 1581-1591.
[32]
Dong N, Shi H, Xu B, et al. Increased plasma S100A12 levels are associated with diabetic retinopathy and prognostic biomarkers of macrovascular events in type 2 diabetic patients[J]. Invest Ophth Vis Sci, 2015, 56(8): 4177-4185.
[33]
Hamano K, Nakadaira I, Suzuki J, et al. N-terminal fragment of probrain natriuretic peptide is associated with diabetes microvascular complications in type 2 diabetes[J]. Vasc Health Risk Manag, 201410(1): 585-589.
[34]
Hainsworth DP, Gangula A, Ghoshdastidar S, et al. Diabetic retinopathy screening using a gold nanoparticle-based paper strip assay for the at-home detection of the urinary biomarker 8-hydroxy-2′-deoxyguanosine[J]. Am Ophthalmol Mol, 2020, 213(5): 306-319.
[35]
Awata T, Yamashita H, Kurihara S, et al. A genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA[J]. PLos One, 2014, 9(11): 1-9.
[36]
Burdon KP, Fogarty RD, Shen W, et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene[J]. Diabetologia, 2015, 58(7): 2288-2297.
[37]
Pollack S, Igo RP, Jensen RA, et al. Multiethnic genome-wide association study of diabetic retinopathy using liability threshold modeling of duration of diabetes and glycemic control[J]. Diabetes, 2019, 68(2): 441-456.
[38]
Yu X, Rong S. Genome-wide associations and confirmatory meta-analyses in diabetic retinopathy[J]. Genes, 2023, 14(3): 653-665.
[39]
Jian Q, Wu Y, Zhang F. Metabolomics in diabetic retinopathy: from potential biomarkers to molecular basis of oxidative stress[J]. Cells, 2022, 11(19): 3005-3024.
[40]
Patel C, Rojas M, Narayanan SP, et al. Arginase as a mediator of diabetic retinopathy[J]. Front Immunol, 2013, 4(1): 173-184.
[41]
Sharma R, Gupta A, Thungapathra M, et al. Telomere mean length in patients with diabetic retinopathy[J]. Sci Rep, 2015, 5(1): 1-6.
[42]
Mishra M, Lillvis J, Seyoum B, et al. Peripheral blood mitochondrial DNA damage as a potential noninvasive biomarker of diabetic retinopathy[J].Invest Ophth Vis Sci, 2016, 57(10): 4035-4044.
[43]
Xiong F, Du X, Hu J, et al. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis[J]. Curr Eye Res, 2014, 39(7): 720-729.
[44]
Zampetaki A, Willeit P, Burr S, et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes[J]. Diabetes, 2016, 65(1): 216-227.
[45]
Kim K, Kim SJ, Han D, et al. Verification of multimarkers for detection of early stage diabetic retinopathy using multiple reaction monitoring[J]. J Proteome Res, 2013, 12(3): 1078-1089.
[46]
Liu YP, Hu SW, Wu ZF, et al. Proteomic analysis of human serum from diabetic retinopathy[J]. Int J Opthalmol-Chi, 2011, 4(6): 616-622.
[47]
Torok Z, Peto T, Csosz E, et al. Tear fluid proteomics multimarkers for diabetic retinopathy screening[J]. Bmc Ophthalmol, 2013, 13(1): 1-8.
[48]
Kim HJ, Kim PK, Yoo HS, et al. Comparison of tear proteins between healthy and early diabetic retinopathy patients[J]. Clin Biochem, 2012, 45(1-2): 60-67.
[49]
Yamada M, Mochizuki H, Kawai M, et al. Decreased tear lipocalinconcentration in patients with meibomian gland dysfunction[J]. Br J Ophthalmol, 2005, 89: 803-805.
[50]
Jin H, Zhu B, Liu X, et al. Metabolic characterization of diabetic retinopathy: An 1H-NMR-based metabolomic approach using human aqueous humor[J]. J Pharmaceut Biomed, 2019, 174(11): 414-421.
[51]
Tamhane M, Cabrera-Ghayouri S, Abelian G, et al. Review of biomarkers in ocular matrices: challenges and opportunities[J]. Pharm Res, 2019, 36(3): 40-75.
[52]
Xuan Q, Ouyang Y, Wang Y, et al. Multiplatform metabolomics reveals novel serum metabolite biomarkers in diabetic retinopathy subjects[J].Adv Sci, 2020, 7(22): 1-10.
[53]
Rhee SY, Jung ES, Park HM, et al. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy[J]. Metabolomics, 2018, 14(2): 1-10.
[54]
Lin HT, Cheng ML, Lo CJ, et al. 1H nuclear magnetic resonance (NMR)-based cerebrospinal fluid and plasma metabolomic analysis in type 2 diabetic patients and risk prediction for diabetic microangiopathy[J]. J Clin Med, 2019, 8(6): 874-896.
[55]
Haines NR, Manoharan N, Olson JL, et al. Metabolomics analysis of human vitreous in diabetic retinopathy and rhegmatogenous retinal detachment[J]. J Proteome Res, 2018, 17(7): 2421-2427.
[56]
Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables[J]. Lancet Diabetes Endo, 2018, 6(5): 361-369.
[1] 陈舜, 薛恩生, 叶琴. PDCA在持续改进超声危急值管理制度中的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 974-978.
[2] 旺久, 陈军, 朱霞, 米玛央金, 赵胜, 陈欣林, 李建华, 王双. 山南市妇幼保健院开展胎儿系统超声筛查的效果分析[J]. 中华医学超声杂志(电子版), 2023, 20(07): 728-733.
[3] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[4] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[5] 王敏, 蒋家斌, 李茂新. 预警宣教联合个性化疼痛管理对腹股沟疝手术患者的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 764-767.
[6] 朱青青, 卫贞祺. 腹股沟疝患者围手术期自我能效管理探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 773-777.
[7] 闵筱兰, 周洁超, 陈振添. 健康管理联合心理干预用于腹腔镜腹股沟疝手术患儿术后效果观察[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 657-661.
[8] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[9] 杨聚荣. 透析患者妊娠的管理[J]. 中华肾病研究电子杂志, 2023, 12(05): 300-300.
[10] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[11] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[12] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[13] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
[14] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
[15] 周慧慧, 石洁, 陶晶晶. 探讨基于云平台的个案追踪管理在新生儿缺氧缺血性脑病出院后的应用[J]. 中华脑血管病杂志(电子版), 2023, 17(06): 591-595.
阅读次数
全文


摘要