切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (05) : 306 -310. doi: 10.3877/cma.j.issn.2095-2007.2023.05.010

综述

循环及眼生物液标志物在早期糖尿病视网膜病变筛查和风险分层管理中的研究进展
黄婵妍, 张妍春(), 郑嘉敏, 王鑫晨   
  1. 712000 咸阳,陕西中医药大学第一临床医学院中医系2021级硕士研究生
    710004 西安市人民医院(西安市第四医院)眼科 陕西省眼科医院糖尿病视网膜病变中心 西北大学附属人民医院 西安市眼底病研究所
  • 收稿日期:2023-08-31 出版日期:2023-10-28
  • 通信作者: 张妍春
  • 基金资助:
    陕西省重点研发计划项目(2021SF-162); 西安市科技计划重大研究项目(201805104YX12SF38(3)); 白求恩-朗沐科研发展专项基金项目(ⅡT)(BJ2020IIT001); Alcon资助项目(ⅡT#75019437)

Research progress of circulating and ocular biomarkers in screening and risk stratification and management of patients with early diabetic retinopathy

Chanyan Huang, Yanchun Zhang(), Jiamin Zheng, Xinchen Wang   

  1. Master′s degree 2021, Department of Chinese Medicine, First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712000, China
    Shaanxi Eye Hospital, Xi′an People′s Hospital (Xi′an Fourth Hospital), Diabetes Retinopathy Center of Shaanxi Provincial Eye Hospital, Affiliated People′s Hospital of Northwest University, Xi′an Ocular Fundus Disease Research Institute, Xi′an 710004, China
  • Received:2023-08-31 Published:2023-10-28
  • Corresponding author: Yanchun Zhang
引用本文:

黄婵妍, 张妍春, 郑嘉敏, 王鑫晨. 循环及眼生物液标志物在早期糖尿病视网膜病变筛查和风险分层管理中的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(05): 306-310.

Chanyan Huang, Yanchun Zhang, Jiamin Zheng, Xinchen Wang. Research progress of circulating and ocular biomarkers in screening and risk stratification and management of patients with early diabetic retinopathy[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(05): 306-310.

糖尿病视网膜病变(DR)是工作年龄成年人失明的主要原因,也是糖尿病常见的并发症之一。及时检测和靶向干预可有效地减少DR引起的视力损害。然而,DR早期缺乏典型症状,同时大范围长期眼底筛查又难度大,故导致DR的诊断和治疗延迟。本文中笔者就循环及眼生物液在早期糖尿病视网膜病变筛查和风险分层管理中的研究进展进行综述,旨在为其治疗和预防性干预提供参考。

Diabetic retinopathy ( DR ) is the leading cause of blindness in working-age adults and one of the most common complications of diabetes. Timely detection and targeted intervention can effectively reduce the visual impairment caused by DR. However, the lack of typical symptoms in the early stage and the difficulty of large-scale long-term fundus screening often delayed the diagnosis and treatment of DR. The progress of circulating and ocular biomarkers in screening and risk stratification and management of patients with early diabetic retinopathy were reviewed in this paper, aiming to provide the reference for therapies and preventive interventions.

[1]
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591.
[2]
Safi H, Safi S, Hafezi-Moghadam A, et al. Early detection of diabetic retinopathy[J]. Surv Ophthalmol, 2018, 63(5): 601-608.
[3]
Vujosevic S, Aldington SJ, Silva P, et al. Screening for diabetic retinopathy: new perspectives and challenges[J]. Lancet Diabetes Endo, 2020, 8(4): 337-347.
[4]
McAuley AK, Sanfilippo PG, Hewitt AW, et al. Vitreous biomarkers in diabetic retinopathy: a systematic review and meta-analysis[J]. J Diabetes Complicat, 2014, 28(3): 419-425.
[5]
Frudd K, Sivaprasad S, Raman R, et al. Diagnostic circulating biomarkers to detect vision——threatening diabetic retinopathy: Potential screening tool of the future?[J]. Acta Ophthalmologica, 2022, 100(3): 648-668.
[6]
Fong PY, Shih KC, Lam PY, et al. Role of tear film biomarkers in the diagnosis and management of dry eye disease[J]. Taiwan J Ophthalmol, 2019, 9(3): 150-159.
[7]
López-Contreras AK, Martínez-Ruiz MG, Olvera-Montaño C, et al. Importance of the use of oxidative stress biomarkers and inflammatory profile in aqueous and vitreous humor in diabetic retinopathy[J]. Antioxidants, 2020, 9(9): 891.
[8]
苗恒,赵明威. 眼内液标本采集和检测技术[J]. 中华眼科杂志202056(4):313-317.
[9]
Wu F, Phone A, Lamy R, et al. Correlation of aqueous, vitreous, and plasma cytokine levels in patients with proliferative diabetic retinopathy[J]. Invest Ophth Vis Sci, 2020, 61(2): 26-26.
[10]
Quek DQY, He F, Sultana R, et al. Novel serum and urinary metabolites associated with diabetic retinopathy in three Asian cohorts[J]. Metabolites, 2021, PMID: 34564429.
[11]
Abramoff MD, Fort PE, Han IC, et al. Approach for a clinically useful comprehensive classification of vascular and neural aspects of diabetic retinal disease[J]. Invest Ophth Vis Sci, 2018, 59(1): 519-527.
[12]
Xu C, Wu Y, Liu G, et al. Relationship between homocysteine level and diabetic retinopathy: a systematic review and meta-analysis[J]. Diagn Pathol, 2014, 9(1): 1-9.
[13]
Gong D, Fang L, Cai Y, et al. Development and evaluation of a risk prediction model for diabetes mellitus type 2 patients with vision-threatening diabetic retinopathy[J]. Front Endocrinol, 2023, PMID: 37693352.
[14]
Setareh J, Hoseinzade G, Khoundabi B, et al. Can the level of HbA1C predict diabetic retinopathy among type II diabetic patients?[J]. BMC ophthalmology, 2022, 22(1): 1-8.
[15]
Schreur V, van Asten F, Ng H, et al. Risk factors for development and progression of diabetic retinopathy in Dutch patients with type 1 diabetes mellitus[J]. Acta Ophthalmologica, 2018, 96(5): 459-464.
[16]
Matuszewski W, Stefanowicz-Rutkowska MM, Szychlińska M, et al. Differences in risk factors for diabetic retinopathy in type 1 and type 2 diabetes mellitus patients in north-east Poland[J]. Medicina, 2020, PMID: 32295214.
[17]
Choudhuri S, Dutta D, Sen A, et al. Role of N-epsilon-carboxy methyl lysine, advanced glycation end products and reactive oxygen species for the development of nonproliferative and proliferative retinopathy in type 2 diabetes mellitus[J]. Mol Vis, 2013, 19(1): 100-113.
[18]
Monnier VM, Sell DR, Gao X, et al. Plasma advanced glycation end products and the subsequent risk of microvascular complications in type 1 diabetes in the DCCT/EDIC[J]. BMJ Open Diabetes Research and Care, 2022, PMID: 35058313.
[19]
Yu L, Chen X, Qin G, et al. Tear film function in type 2 diabetic patients with retinopathy[J]. Ophthalmologica, 2008, 222(4): 284-291.
[20]
Mishra N, Saxena S, Shukla RK, et al. Association of serum Nε-Carboxy methyl lysine with severity of diabetic retinopathy[J]. J Diabetes Complicat, 2016, 30(3): 511-517.
[21]
Kerkeni M, Saïdi A, Bouzidi H, et al. Elevated serum levels of AGEs, sRAGE, and pentosidine in Tunisian patients with severity of diabetic retinopathy[J]. Microvasc Res, 2012, 84(3):378-383.
[22]
Ng ZX, Chua KH, Iqbal T, et al. Soluble receptor for advanced glycation end-product (sRAGE)/pentosidine ratio: a potential risk factor determinant for type 2 diabetic retinopathy[J]. Int J Mol Sci, 2013, 14(4): 7480-7491.
[23]
Ahuja S, Saxena S, Akduman L, et al. Serum vascular endothelial growth factor is a biomolecular biomarker of severity of diabetic retinopathy[J]. Int J Retina Vitreous, 2019, 5: 1-6.
[24]
Jain A, Saxena S, Khanna VK, et al. Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus[J]. Mol Vis, 2013, 19(8): 1760-1968.
[25]
Matsuyama K, Ogata N, Matsuoka M, et al. Relationship between pigment epithelium-derived factor (PEDF) and renal function in patients with diabetic retinopathy[J]. Mol Vis, 2008, 14(5):992-996.
[26]
Zuo J, Lan Y, Hu H, et al. Metabolomics-based multidimensional network biomarkers for diabetic retinopathy identification in patients with type 2 diabetes mellitus[J]. BMJ Open Diabetes Res Care, 2021, PMID: 33593748.
[27]
Khaloo P, Qahremani R, Rabizadeh S, et al. Nitric oxide and TNF-alpha are correlates of diabetic retinopathy independent of hs-CRP and HbA1c[J]. Endocrine, 2020, 69(3): 536-541.
[28]
Curovic VR, Suvitaival T, Mattila I, et al. Circulating metabolites and lipids are associated to diabetic retinopathy in individuals with type 1 diabetes[J]. Diabetes, 2020, 69(10): 2217-2226.
[29]
Shen J, Zhang L, Wang Y, et al. Beneficial actions of essential fatty acids in streptozotocin-induced type 1 diabetes mellitus[J]. Frontiers in Nutrition, 2022, PMID: 35669071.
[30]
Zhu XR, Yang F, Lu J, et al. Plasma metabolomic profiling of proliferative diabetic retinopathy[J]. Nutr Metab, 2019, 16(1): 1-11.
[31]
Welsh P, Rankin N, Li Q, et al. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: results from the advance trial[J]. Diabetologia, 2018, 61(5): 1581-1591.
[32]
Dong N, Shi H, Xu B, et al. Increased plasma S100A12 levels are associated with diabetic retinopathy and prognostic biomarkers of macrovascular events in type 2 diabetic patients[J]. Invest Ophth Vis Sci, 2015, 56(8): 4177-4185.
[33]
Hamano K, Nakadaira I, Suzuki J, et al. N-terminal fragment of probrain natriuretic peptide is associated with diabetes microvascular complications in type 2 diabetes[J]. Vasc Health Risk Manag, 201410(1): 585-589.
[34]
Hainsworth DP, Gangula A, Ghoshdastidar S, et al. Diabetic retinopathy screening using a gold nanoparticle-based paper strip assay for the at-home detection of the urinary biomarker 8-hydroxy-2′-deoxyguanosine[J]. Am Ophthalmol Mol, 2020, 213(5): 306-319.
[35]
Awata T, Yamashita H, Kurihara S, et al. A genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA[J]. PLos One, 2014, 9(11): 1-9.
[36]
Burdon KP, Fogarty RD, Shen W, et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene[J]. Diabetologia, 2015, 58(7): 2288-2297.
[37]
Pollack S, Igo RP, Jensen RA, et al. Multiethnic genome-wide association study of diabetic retinopathy using liability threshold modeling of duration of diabetes and glycemic control[J]. Diabetes, 2019, 68(2): 441-456.
[38]
Yu X, Rong S. Genome-wide associations and confirmatory meta-analyses in diabetic retinopathy[J]. Genes, 2023, 14(3): 653-665.
[39]
Jian Q, Wu Y, Zhang F. Metabolomics in diabetic retinopathy: from potential biomarkers to molecular basis of oxidative stress[J]. Cells, 2022, 11(19): 3005-3024.
[40]
Patel C, Rojas M, Narayanan SP, et al. Arginase as a mediator of diabetic retinopathy[J]. Front Immunol, 2013, 4(1): 173-184.
[41]
Sharma R, Gupta A, Thungapathra M, et al. Telomere mean length in patients with diabetic retinopathy[J]. Sci Rep, 2015, 5(1): 1-6.
[42]
Mishra M, Lillvis J, Seyoum B, et al. Peripheral blood mitochondrial DNA damage as a potential noninvasive biomarker of diabetic retinopathy[J].Invest Ophth Vis Sci, 2016, 57(10): 4035-4044.
[43]
Xiong F, Du X, Hu J, et al. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis[J]. Curr Eye Res, 2014, 39(7): 720-729.
[44]
Zampetaki A, Willeit P, Burr S, et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes[J]. Diabetes, 2016, 65(1): 216-227.
[45]
Kim K, Kim SJ, Han D, et al. Verification of multimarkers for detection of early stage diabetic retinopathy using multiple reaction monitoring[J]. J Proteome Res, 2013, 12(3): 1078-1089.
[46]
Liu YP, Hu SW, Wu ZF, et al. Proteomic analysis of human serum from diabetic retinopathy[J]. Int J Opthalmol-Chi, 2011, 4(6): 616-622.
[47]
Torok Z, Peto T, Csosz E, et al. Tear fluid proteomics multimarkers for diabetic retinopathy screening[J]. Bmc Ophthalmol, 2013, 13(1): 1-8.
[48]
Kim HJ, Kim PK, Yoo HS, et al. Comparison of tear proteins between healthy and early diabetic retinopathy patients[J]. Clin Biochem, 2012, 45(1-2): 60-67.
[49]
Yamada M, Mochizuki H, Kawai M, et al. Decreased tear lipocalinconcentration in patients with meibomian gland dysfunction[J]. Br J Ophthalmol, 2005, 89: 803-805.
[50]
Jin H, Zhu B, Liu X, et al. Metabolic characterization of diabetic retinopathy: An 1H-NMR-based metabolomic approach using human aqueous humor[J]. J Pharmaceut Biomed, 2019, 174(11): 414-421.
[51]
Tamhane M, Cabrera-Ghayouri S, Abelian G, et al. Review of biomarkers in ocular matrices: challenges and opportunities[J]. Pharm Res, 2019, 36(3): 40-75.
[52]
Xuan Q, Ouyang Y, Wang Y, et al. Multiplatform metabolomics reveals novel serum metabolite biomarkers in diabetic retinopathy subjects[J].Adv Sci, 2020, 7(22): 1-10.
[53]
Rhee SY, Jung ES, Park HM, et al. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy[J]. Metabolomics, 2018, 14(2): 1-10.
[54]
Lin HT, Cheng ML, Lo CJ, et al. 1H nuclear magnetic resonance (NMR)-based cerebrospinal fluid and plasma metabolomic analysis in type 2 diabetic patients and risk prediction for diabetic microangiopathy[J]. J Clin Med, 2019, 8(6): 874-896.
[55]
Haines NR, Manoharan N, Olson JL, et al. Metabolomics analysis of human vitreous in diabetic retinopathy and rhegmatogenous retinal detachment[J]. J Proteome Res, 2018, 17(7): 2421-2427.
[56]
Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables[J]. Lancet Diabetes Endo, 2018, 6(5): 361-369.
[1] 周易, 张红梅, 尹立雪, 杨浩, 付培. 四川省超声医学质量控制指标动态变化趋势分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 664-670.
[2] 顾莉莉, 姜凡. 安徽省超声产前筛查切面图像质量现状调查情况及分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 671-674.
[3] 王晓娜, 张宁, 宋伟, 杨明, 李丽, 薛红元. 河北省超声医学质量管理与控制现状分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 675-680.
[4] 陈雪琪, 张莉, 郭乡平, 罗林枝, 晋思琦, 陈程, 赵瑞娜, 施敏, 杨筱, 李建初. 基于可验证自学学分管理系统比较超声医师继续教育中手机APP端与PC端需求[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 527-533.
[5] 杨桂清, 孟静静. 哺乳期亚临床乳腺炎的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 376-379.
[6] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[7] 钱警语, 郑明明. 《2024意大利妇产科学会非侵入性和侵入性产前诊断指南》解读[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 486-492.
[8] 李楠, 邱思齐, 薛鸣宇, 张英. 自伤性口腔损害及其疾病管理[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(05): 307-311.
[9] 莫林键, 杨舒博, 农卫赟, 程继文. 人工智能虚拟数字医师在钬激光前列腺剜除日间手术患教管理中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 318-322.
[10] 姜然, 张海泳. 腹腔镜食管裂孔疝修补术患者围手术期手术配合的精细化管理与应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 584-587.
[11] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[12] 陈秀梅, 陈思涓, 郑小静. 护理联盟体构建及实践的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 703-708.
[13] 李茂军, 唐彬秩, 吴青, 阳倩, 梁小明, 邹福兰, 黄蓉, 陈昌辉. 新生儿呼吸窘迫综合征的管理:多国指南/共识及RDS-NExT workshop 共识陈述简介和评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 607-617.
[14] 胡云鹤, 周玉焯, 付瑞瑛, 于凡, 李爱东. CHS-DRG付费制度下GB1分组住院费用影响因素分析与管理策略探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 568-574.
[15] 李璇, 邓岚, 郭微, 邓永梅, 刘杰昕. 标准化皮肤管理流程在防治脑卒中患者失禁相关性皮炎中的应用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 479-482.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?