切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2024, Vol. 14 ›› Issue (02) : 119 -124. doi: 10.3877/cma.j.issn.2095-2007.2024.02.010

综述

视网膜血管迂曲度与心血管疾病危险因素相关性的研究进展
连奕豪1, 易加祎2, 张青3,()   
  1. 1. 100730 首都医科大学第四临床医学院2020级临床医学(5+3)专业学生
    2. 100029 首都医科大学附属北京安贞医院 冠心病中心
    3. 100730 首都医科大学附属北京同仁医院 北京市眼科研究所
  • 收稿日期:2024-04-08 出版日期:2024-04-28
  • 通信作者: 张青
  • 基金资助:
    国家自然科学基金项目(82070960); 中国医学科学院阜外医院高水平医院临床科研业务费项目(2023-GSP-GG-10)

Research progress on the correlation between retinal vascular tortuosity and cardiovascular disease risk factors

Yihao Lian1, Jiayi Yi2, Qing Zhang3,()   

  1. 1. Grade 2020 (major in clinical medicine 5+ 3 ), the Fourth Clinical College, Capital Medical University, Beijing 100730, China
    2. Coronary Heart Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
    3. Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
  • Received:2024-04-08 Published:2024-04-28
  • Corresponding author: Qing Zhang
引用本文:

连奕豪, 易加祎, 张青. 视网膜血管迂曲度与心血管疾病危险因素相关性的研究进展[J]. 中华眼科医学杂志(电子版), 2024, 14(02): 119-124.

Yihao Lian, Jiayi Yi, Qing Zhang. Research progress on the correlation between retinal vascular tortuosity and cardiovascular disease risk factors[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(02): 119-124.

作为新的独立预测因子,视网膜血管迂曲度在心血管疾病发生和预后中的重要性已经引起广泛关注。在心血管疾病的多种危险因素和早期阶段,机体可能处于缺氧、炎症和血液成分异常等病理状态。这些状态导致内皮细胞功能障碍,进而增大血管内血液流动的剪切力。这种较大的剪切应力、伴随着血管结构重塑以及机械稳定性的丧失,可能是导致视网膜血管迂曲度变化的机制。近年来,临床研究探索了视网膜血管迂曲度与心血管患病或发病风险及其危险因素之间的关联,结果显示视网膜静脉迂曲度增加与收缩压增高、身体质量指数增加、长期高血压密切相关;视网膜静脉迂曲度增加也可能是糖尿病微血管损伤的早期指标,与较高的2型糖尿病患病风险相关,在预测糖尿病性视网膜病变的发生、发展和严重程度方面具有重要价值;视网膜动脉迂曲度与甘油三酯、总胆固醇和低密度脂蛋白水平呈正相关。视网膜血管分析在心血管风险预防和预后中具有重要的临床实践价值。通过评估视网膜血管迂曲度的变化,医师可以获得心血管疾病的早期预警和风险评估信息;视网膜血管分析可以辅助临床医师制定个体化的治疗方案,监测治疗效果,并评估患者的预后情况。本文中笔者对视网膜血管迂曲度变化的机制、临床相关性及其在心血管疾病早期诊断和管理中的应用价值进行综述。

As a new independent predictor, the importance of retinal vascular tortuosity in the occurrence and prognosis of cardiovascular diseases has attracted widespread attention. In various risk factors and early stages of cardiovascular disease, the body may be in pathological states such as hypoxia, inflammation, and abnormal blood composition. These states lead to endothelial cell dysfunction, which in turn increases the shear force of blood flow in the blood vessels. This large shear stress, accompanied by vascular structural remodeling and loss of mechanical stability, may be the mechanism leading to changes in retinal vascular tortuosity. In recent years, the association between retinal vein tortuosity and cardiovascular disease or disease risk and risk factors have been explored in a quantify of clinical trials, which shows that an increase in retinal vein tortuosity is closely related to increased systolic blood pressure, increased body mass index, and long-term hypertension. The increase of retinal vein tortuosity may also be an early indicator of microvascular injury in diabetes, which is related to the higher risk of type 2 diabetes, and has important value in predicting the occurrence, development and severity of diabetes retinopathy. The tortuosity of retinal arteries is positively correlated with levels of triglycerides, total cholesterol, and low-density lipoprotein. Evaluating the changes of retinal vascular tortuosity has important clinical practice value in cardiovascular risk prevention and prognosis, such as obtaining early warning and risk assessment information for cardiovascular diseases for physican. Retinal vascular analysis can assist clinicians in developing personalized treatment plans, monitoring treatment outcomes, and evaluating patient prognosis. The mechanism, clinical relevance, and application value of retinal vascular tortuosity changes in early diagnosis and management of cardiovascular diseases were reviewed in this paper.

图1 视网膜血管迂曲变化的可能机制示意图 蓝色箭头表示视网膜血管扭曲发生进展的时间顺序,红色箭头表示心脑血管危险因素和其他因素之间的关联与贡献。图2 视网膜血管分析在心血管危险分层和治疗监测中潜在应用的流程图。图3 视网膜血管迂曲度测量算法时间轴示意图
[1]
Mordi IR, Trucco E, Syed MG, et al. Prediction of Major Adverse Cardiovascular Events From Retinal Clinical and Genomic Data in Individuals With Type 2 Diabetes[J]. Diabetes Care, 2022, 45(3): 710-716.
[2]
Flammer J, Konieczka K, Bruno RM, et al. The eye and the heart[J]. Eur Heart J, 2013, 34(17): 1270-1278.
[3]
Trovato GM. Eyeing the retinal vessels: A window on the heart and beyond[J]. Atherosclerosis, 2022, 348: 51-52.
[4]
Sandoval GE, Mclachlan S, Price AH, et al. Retinal arteriolar tortuosity and fractal dimension are associated with long-term cardiovascular outcomes in people with type 2 diabetes[J]. Diabetologia, 2021, 64(10): 2215-2227.
[5]
Liew G, Mitchell P, Rochtchina E, et al. Fractal analysis of retinal microvasculature and coronary heart disease mortality[J]. Eur Heart J, 2011, 32(4): 422-429.
[6]
Barbosa M, Maddess T, Ahn S, et al. Novel morphometric analysis of higher order structure of human radial peri-papillary capillaries: relevance to retinal perfusion efficiency and age[J]. Sci Rep, 2019, 9(1): 13464.
[7]
Vilela MA, Amaral CE, Ferreira MT. Retinal vascular tortuosity: Mechanisms and measurements[J]. Eur J Ophthalmol, 2021, 31(3): 1497-1506.
[8]
Han HC. Twisted blood vessels[J]. J Vasc Res, 2012, 49(3): 185.
[9]
Tapp RJ, Owen CG, Barman SA, et al. Retinal microvascular associations with cardiometabolic risk factors differ by diabetes status[J]. Diabetologia, 2022, 65(10): 1652-1663.
[10]
Monteiro HI, Rocha SA, Barbosa BJ. Optical coherence tomography angiography changes in cardiovascular systemic diseases and risk factors: A Review[J]. Acta Ophthalmol, 2022, 100(1): e1-e15.
[11]
Maccormick IJ, Somner J, Morris DS, et al. Retinal vessel tortuosity in response to hypobaric hypoxia[J]. High Alt Med Biol, 2012, 13(4): 263-268.
[12]
Bikbova G, Oshitari T, Bikbov M. Diabetic Neuropathy of the Retina and Inflammation: Perspectives[J]. Int J Mol Sci, 2023, 24(11): 9166.
[13]
Willerslev A, Larsen M, Rothenbuehler SP, et al. Spectral-domain optical coherence tomography of retinal vessels in Waldenstr?[J]. Acta Ophthalmol, 2020, 98(2): 153-157.
[14]
Owen CG, Rudnicka AR, Welikala RA, et al. Retinal Vasculometry Associations with Cardiometabolic Risk Factors in the European Prospective Investigation of Cancer-Norfolk Study[J]. Ophthalmology, 2019, 126(1): 96-106.
[15]
Xue CC, Li C, Hu JF, et al. Retinal vessel caliber and tortuosity and prediction of 5-year incidence of hypertension[J]. J Hypertens, 2023, 41(5): 830-837.
[16]
Tapp RJ, Owen CG, Barman SA, et al. Associations of Retinal Microvascular Diameters and Tortuosity With Blood Pressure and Arterial Stiffness[J]. Hypertension, 2019, 74(6): 1383-1390.
[17]
Pierro L, Arrigo A, De Crescenzo M, et al. Quantitative Optical Coherence Tomography Angiography Detects Retinal Perfusion Changes in Carotid Artery Stenosis[J]. Front Neurosci, 2021, 15: 640666.
[18]
Wenstedt EFE, Beugelink L, Schrooten EM, et al. High-salt intake affects retinal vascular tortuosity in healthy males[J]. Sci Rep, 2021, 11(1): 801.
[19]
Li M, Wang G, Xia H, et al. Retinal vascular geometry detection as a biomarker in diabetes mellitus[J]. Eur J Ophthalmol, 2022, 32(3): 1710-1719.
[20]
Liew G, Benitez AP, Craig ME, et al. Progressive Retinal Vasodilation in Patients With Type 1 Diabetes: A Longitudinal Study of Retinal Vascular Geometry[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2503-2509.
[21]
Sasongko MB, Wong TY, Nguyen TT, et al. Retinal vascular tortuosity in persons with diabetes and diabetic retinopathy[J]. Diabetologia, 2011, 54(9): 2409-2416.
[22]
Forster RB, Garcia ES, Sluiman AJ, et al. Retinal venular tortuosity and fractal dimension predict incident retinopathy in adults with type 2 diabetes[J]. Diabetologia, 2021, 64(5): 1103-1112.
[23]
Li LJ, Lamoureux E, Wong TY, et al. Short-term poor glycemic control and retinal microvascular changes in pediatric Type 1 Diabetes patients in Singapore[J]. BMC Ophthalmol, 2017, 17(1): 60.
[24]
Chen TA, Shields RA, Bodnar ZH, et al. A Spectrum of Regression Following Intravitreal Bevacizumab in Retinopathy of Prematurity[J]. Am J Ophthalmol, 2019, 198: 63-69.
[25]
Tai ELM, Kueh YC, Wan HWH, et al. Comparison of retinal vascular geometry in obese and non-obese children[J]. PLoS One, 2018, 13(2): e0191434.
[26]
Liu M, Lycett K, Wake M, et al. Cardiovascular health and retinal microvascular geometry in Australian 11-12 year-olds[J]. Microvasc Res, 2020, 129: 103966.
[27]
Jabs DA, Van Natta ML, Trang G, et al. Association of Systemic Inflammation With Retinal Vascular Caliber in Patients With AIDS[J]. Invest Ophthalmol Vis Sci, 2019, 60(6): 2218-2225.
[28]
Okamura T, Hashimoto Y, Hamaguchi M, et al. Ectopic fat obesity presents the greatest risk for incident type 2 diabetes[J]. Int J Obes (Lond), 2019, 43(1): 139-148.
[29]
Tapp RJ, Owen CG, Barman SA, et al. Retinal Vascular Tortuosity and Diameter Associations with Adiposity and Components of Body Composition[J]. Obesity (Silver Spring), 2020, 28(9): 1750-1760.
[30]
Betzler BK, Sabanayagam C, Tham YC, et al. Retinal vascular profile in predicting incident cardiometabolic diseases among individuals with diabetes[J]. Microcirculation, 2022, 29(4-5): e12772.
[31]
Owen CG, Rudnicka AR, Nightingale CM, et al. Retinal arteriolar tortuosity and cardiovascular risk factors in a multi-ethnic population study of 10-year-old children[J]. Arterioscler Thromb Vasc Biol, 2011, 31(8): 1933-1938.
[32]
Cheung CY, Zheng Y, Hsu W, et al. Retinal vascular tortuosity, blood pressure, and cardiovascular risk factors[J]. Ophthalmology, 2011, 118(5): 812-818.
[33]
Quiroz J, Yazdanyar A. Animal models of diabetic retinopathy[J]. Ann Transl Med, 2021, 9(15): 1272.
[34]
Witt N, Wong TY, Hughes AD, et al. Abnormalities of Retinal Microvascular Structure and Risk of Mortality From Ischemic Heart Disease and Stroke[J]. Hypertension, 2006, 47(5): 975-981.
[35]
Wang SB, Mitchell P, Liew G, et al. A spectrum of retinal vasculature measures and coronary artery disease[J]. Atherosclerosis, 2018, 268: 215-224.
[36]
Fu Y, Yusufu M, Wang Y, et al. Association of retinal microvascular density and complexity with incident coronary heart disease[J]. Atherosclerosis, 2023, 380: 117196.
[37]
Ong YT, De Silva DA, Cheung CY, et al. Microvascular structure and network in the retina of patients with ischemic stroke[J]. Stroke, 2013, 44(8): 2121-2127.
[38]
Doubal FN, Macgillivray TJ, Patton N, et al. Fractal analysis of retinal vessels suggests that a distinct vasculopathy causes lacunar stroke[J]. Neurology, 2010, 74(14): 1102-1107.
[39]
Cheung N, Liew G, Lindley RI, et al. Retinal fractals and acute lacunar stroke[J]. Ann Neurol, 2010, 68(1): 107-111.
[40]
Biffi E, Turple Z, Chung J, et al. Retinal biomarkers of Cerebral Small Vessel Disease: A systematic review[J]. PLoS One, 2022, 17(4): e0266974.
[41]
Kawasaki R, Che Azemin MZ, Kumar DK, et al. Fractal dimension of the retinal vasculature and risk of stroke[J]. Neurology, 2011, 76(20): 1766-1767.
[42]
Cheung CY, Tay WT, Ikram MK, et al. Retinal microvascular changes and risk of stroke[J]. Stroke, 2013, 44(9): 2402-2408.
[43]
Liew G, Gopinath B, White AJ, et al. Retinal Vasculature Fractal and Stroke Mortality[J]. Stroke, 2021, 52(4): 1276-1282.
[44]
Wolffsohn JS, Napper GA, Ho SM, et al. Improving the description of the retinal vasculature and patient history taking for monitoring systemic hypertension[J]. Ophthalmic Physiol Opt, 2001, 21(6): 441-449.
[45]
Hughes AD, Stanton AV, Jabbar AS, et al. Effect of antihypertensive treatment on retinal microvascular changes in hypertension[J]. J Hypertens, 2008, 26(8): 1703-1707.
[46]
Shamsa K, Perloff JK, Lee E, et al. Retinal vascular patterns after operative repair of aortic isthmic coarctation[J]. Am J Cardiol, 2010, 105(3): 408-410.
[47]
Gao Y, Xu L, He N, et al. A narrative review of retinal vascular parameters and the applications (Part II): Diagnosis in stroke[J]. Brain Circ, 2023, 9(3): 129-134.
[48]
Rudnicka AR, Welikala R, Barman S, et al. Artificial intelligence-enabled retinal vasculometry for prediction of circulatory mortality, myocardial infarction and stroke[J]. Br J Ophthalmol, 2022, 106(12): 1722-1729.
[49]
Hanssen H, Streese L, Vilser W. Retinal vessel diameters and function in cardiovascular risk and disease[J]. Prog Retin Eye Res, 2022, 91: 101095.
[50]
Allon R, Aronov M, Belkin M, et al. Retinal Microvascular Signs as Screening and Prognostic Factors for Cardiac Disease: A Systematic Review of Current Evidence[J]. Am J Med, 2021, 134(1): 36-47.
[51]
Wallace DK, Freedman SF, Zhao Z, et al. Accuracy of ROPtool vs individual examiners in assessing retinal vascular tortuosity[J]. Arch Ophthalmol, 2007, 125(11): 1523-1530.
[52]
Wallace DK, Freedman SF, Zhao Z. Evolution of plus disease in retinopathy of prematurity[J]. Trans Am Ophthalmol Soc, 2009, 107: 47-52.
[1] 余玲玲, 彭倪, 刘小虎, 刘聪慧. 蟛蜞菊内酯上调miR-190表达抑制高糖诱导的人视网膜血管内皮细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 339-345.
[2] 谢家兴, 李学民, 敖明昕. 人工智能在白内障诊断领域的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 361-365.
[3] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[4] 陈子扬, 谢立科, 郝晓凤, 张小艳. 抗磷脂抗体相关视网膜血管阻塞的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 367-371.
[5] 胡晨曦, 唐楚皓, 韩亮, 段虹宇, 杨婷婷, 刘一昀, 马佰凯, 赵琳, 齐虹. 光学相干断层扫描血管成像对视网膜血管形态学评估的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 47-51.
[6] 安宁, 马雪莹, 白永杰, 王海山. 人工智能在视网膜血管疾病诊断应用中的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 178-182.
[7] 李如意, 李雨雨, 代贺华, 吴幸之, 季瑛, 李根林. Flammer综合征样反应对视网膜色素变性患者眼部供血变化影响的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 146-152.
[8] 刘含若, 白玮玲, 张悦, 杜一帆, 王宁利. 人工智能深度学习技术在辅助青光眼性眼底病变图像标注中的应用研究[J]. 中华眼科医学杂志(电子版), 2020, 10(04): 234-238.
[9] 李冰, 甘海润, 蔡建勋, 龙浩宇, 李露婷. 血管内皮细胞Ddx24基因条件性敲除鼠构建以及对视网膜血管新生的影响[J]. 中华介入放射学电子杂志, 2022, 10(04): 429-435.
阅读次数
全文


摘要