[1] |
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136.
|
[2] |
Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy[J]. N Engl J Med, 2012, 366(13): 1227-1239.
|
[3] |
Cheung N, Wong TY. Diabetic retinopathy and systemic vascular complications[J]. Prog Retin Eye Res, 2008, 27(2): 161-176.
|
[4] |
Tang J, Kern TS. Inflammation in diabetic retinopathy[J]. Prog Retin Eye Res, 2011, 30(5): 343-358.
|
[5] |
Cunha-Vaz J, Ribeiro L, Lobo C. Phenotypes and biomarkers of diabetic retinopathy[J]. Prog Retin Eye Res, 2014, 41: 90-111.
|
[6] |
Mastropasqua R, Toto L, Cipollone F, et al. Role of microRNAs in the modulation of diabetic retinopathy[J]. Prog Retin Eye Res, 2014, 43: 92-107.
|
[7] |
Simó R, Hernández C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence[J]. Prog Retin Eye Res, 2015, 48: 160-180.
|
[8] |
Kowluru RA, Kowluru A, Mishra M, et al. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy[J]. Prog Retin Eye Res, 2015, 48: 40-61.
|
[9] |
Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy[J]. Prog Retin Eye Res, 2016, 51: 156-186.
|
[10] |
Benfey PN. Molecular biology: microRNA is here to stay[J]. Nature, 2003, 425(6955): 244-245.
|
[11] |
Chien HY, Lee TP, Chen CY, et al. Circulating microRNA as a diagnostic marker in populations with type 2 diabetes mellitus and diabetic complications[J]. J Chin Med Assoc, 2015, 78(4): 204-211.
|
[12] |
American Diabetes Association. Diagnosis and classification of diabetes mellitus[J]. Diabetes Care, 2014, 37(Suppl 1): S81-S90.
|
[13] |
Wilkinson CP, Ferris FL, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682.
|
[14] |
Klein BE. Reduction in risk of progression of diabetic retinopathy[J]. N Engl J Med, 2010, 363(3): 287-288.
|
[15] |
Aiello LP. Angiogenic pathways in diabetic retinopathy[J]. N Engl J Med, 2005, 353(8): 839-841.
|
[16] |
Roy S, Bae E, Amin S, et al. Extracellular matrix, gap junctions, and retinal vascular homeostasis in diabetic retinopathy[J]. Exp Eye Res, 2015, 133: 58-68.
|
[17] |
Reiter CE, Gardner TW. Functions of insulin and insulin receptor signaling in retina: possible implications for diabetic retinopathy[J]. Prog Retin Eye Res, 2003, 22(4): 545-562.
|
[18] |
Simó R, Sundstrom JM, Antonetti DA. Ocular Anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy[J]. Diabetes Care, 2014, 37: 893-899.
|
[19] |
Cheung N, Wong IY, Wong TY. Ocular anti-VEGF therapy for diabetic retinopathy: overview of clinical efficacy and evolving applications[J]. Diabetes Care, 2014, 37(4): 900-905.
|
[20] |
Williams M, Hogg RE, Chakravarthy U. Antioxidants and diabetic retinopathy[J]. Curr Diab Rep, 2013, 13(4): 481-487.
|
[21] |
Behl T, Kaur I, Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy[J]. Surv Ophthalmol, 2016, 61(2): 187-196.
|
[22] |
Zhang W, Liu H, Rojas M, et al. Anti-inflammatory therapy for diabetic retinopathy[J]. Immunotherapy, 2011, 3(5): 609-628.
|
[23] |
Durham JT, Herman IM. Microvascular modifications in diabetic retinopathy[J]. Curr Diab Rep, 2011, 11(4): 253-264.
|
[24] |
Zhang L, Chen B, Tang L. Metabolic memory: mechanisms and implications for diabetic retinopathy[J]. Diabetes Res Clin Pract, 2012, 96(3): 286-293.
|
[25] |
Kowluru RA. Mitochondria damage in the pathogenesis of diabetic retinopathy and in the metabolic memory associated with its continued progression[J]. Curr Med Chem, 2013, 20(26): 3226-3233.
|
[26] |
Frank RN. Diabetic retinopathy[J]. N Engl J Med, 2004, 350(1): 48-58.
|
[27] |
Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review[J]. JAMA, 2007, 298(8): 902-916.
|
[28] |
Einarsdóttir AB, Stefánsson E. Prevention of diabetic retinopathy[J]. Lancet, 2009, 373(9672): 1316-1318.
|
[29] |
Ockrim Z, Yorston D. Managing diabetic retinopathy[J]. BMJ, 2010, 341: c5400.
|
[30] |
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones[J]. Cell, 2014, 157(1): 77-94.
|
[31] |
Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease[J]. Cell, 2012, 148(6): 1172-1187.
|
[32] |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
|
[33] |
Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics[J]. J Cell Physiol, 2016, 231(1): 25-30.
|
[34] |
Suárez Y, Fernández-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis[J]. Proc Natl Acad Sci U S A, 2008, 105(37): 14082-14087.
|
[35] |
Kovacs B, Lumayag S, Cowan C, et al. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats[J]. Invest Ophthalmol Vis Sci, 2011, 52(7): 4402-4409.
|
[36] |
Wu JH, Gao Y, Ren AJ, et al. Altered microRNA expression profiles in retinas with diabetic retinopathy[J]. Ophthalmic Res, 2012, 47(4): 195-201.
|
[37] |
Wang C, Wang S, Zhao P, et al. MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression[J]. J Cell Biochem, 2012, 113(6): 2040-2046.
|
[38] |
Dai R, Li J, Liu Y, et al. miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27(Kip1)- and MEK/ERK-mediated cell cycle regulation[J]. Biol Chem, 2010, 391(7): 791-801.
|
[39] |
Kedde M, van Kouwenhove M, Zwart W, et al. A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility[J]. Nat Cell Biol, 2010, 12(10): 1014-1020.
|
[40] |
Lolli A, Lambertini E, Penolazzi L, et al. Pro-chondrogenic effect of miR-221 and slug depletion in human MSCs[J]. Stem Cell Rev, 2014, 10(6): 841-855.
|