切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (04) : 246 -251. doi: 10.3877/cma.j.issn.2095-2007.2019.04.009

论著

糖尿病视网膜病变患者血清微核糖核酸表达谱的初步研究
于海生1,(), 刘鹤南2, 陈晓隆2, 吴娜3   
  1. 1. 113008 抚顺爱尔眼科医院眼科
    2. 110004 沈阳,中国医科大学附属盛京医院眼科
    3. 110004 沈阳,中国医科大学附属盛京医院内分泌科
  • 收稿日期:2019-01-16 出版日期:2019-08-28
  • 通信作者: 于海生
  • 基金资助:
    国家自然科学基金项目(81371045; 81570866)

Preliminary study on serum microRNA expression profile in patients with diabetic retinopathy

Haisheng Yu1,(), Henan Liu2, Xiaolong Chen2, Na Wu3   

  1. 1. Department of Ophthalmology, Fushun Aier Eye Hospital, Fushun 113008, China
    2. Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang 110004, China
    3. Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang 110004, China
  • Received:2019-01-16 Published:2019-08-28
  • Corresponding author: Haisheng Yu
引用本文:

于海生, 刘鹤南, 陈晓隆, 吴娜. 糖尿病视网膜病变患者血清微核糖核酸表达谱的初步研究[J]. 中华眼科医学杂志(电子版), 2019, 09(04): 246-251.

Haisheng Yu, Henan Liu, Xiaolong Chen, Na Wu. Preliminary study on serum microRNA expression profile in patients with diabetic retinopathy[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(04): 246-251.

目的

本研究旨在探讨血清微核糖核酸(miRNA)成为糖尿病视网膜病变(DR)生物标志物的可能性。

方法

队列研究。2014年11月至2015年6月,招募中国医科大学附属盛京医院眼科和内分泌科患者69例作为研究对象。其中,单纯糖尿病患者30例作为单纯糖尿病组,DR患者39例作为DR组。两组采用数字表法各随机选取3例患者,应用miRNA芯片技术检测血清miRNA的表达水平;使用分层聚类分析,获得DR患者的血清miRNA表达谱;利用生物信息学方法,分析特异性表达的血清miRNA的靶基因及其相关信号通路。采用实时荧光定量聚合酶链式反应(qRT-PCR)技术,检测两组患者血清中特异性miRNA的表达水平。采用受试者工作特征曲线(ROC曲线),评价血清中特异性miRNA对DR的诊断效能。

结果

miRNA芯片技术检测表明,在3100种成熟的miRNA中,共筛选出19种差异miRNA。其中,13种表达上调;6种表达下调。结果表明,在DR患者血清中存在特异性表达的miRNA。qRT-PCR检测表明,DR组miR-19b、miR-221和miR-18b表达均上调,差异有统计学意义(U=256.027,125.515,254.017;P<0.05),并且与miRNA芯片筛选的结果相符。受试者工作特征曲线结果表明,miR-19b(曲线下面积=0.78,95%CI=0.66~0.90)、miR-221(曲线下面积=0.89,95%CI=0.81~0.97)和miR-18b(曲线下面积=0.78,95%CI=0.67~0.90)对DR均有较高的诊断效能,其中miR-221诊断效能最高。

结论

DR患者血清中存在特异性miRNA表达谱,这些差异性表达的miRNA可能作为调控因子,通过调节靶基因调控DR的发生和发展,其中miR-221最有望成为DR的生物标志物。

Objective

The aim of this study was to study the feasibility of serum microRNA(miRNA) as a novel biomarker in patients with diabetic retinopathy(DR).

Methods

This was a cohort study. From November 2014 to June 2015, 69 patients were enrolled in Ophthalmology Department and Endocrinology Department of Shengjing Hospital, China Medical University. 30 simple diabetes mellitus(DM) patients were divided into DM group, and 39 diabetic retinopathy(DR) patients were divided into DR group. Randomly selected 3 patients from each group, and used the miRNA microarray technology to detected the expression level of serum miRNA.The hierarchical cluster analysis was used to obtain the serum miRNA expression profile of DR patients. Bioinformatics methods was used to analyze the target genes and related signaling pathways of the specific expression of serum miRNA. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) technology was used to detect the expression of miRNA in serum of the two patients. To establish the receiver operating characteristic(ROC) curve, to evaluate the diagnostic efficacy of specific miRNA in the serum of DR patients.

Results

miRNA microarray showed that in 3100 kinds of mature miRNAs, a total of 19 miRNA with significance differences were screened. Of the difference miRNA, there were 13 upregulated miRNAs, while there were 6 downregulated miRNAs. The results suggestted tha there were specific miRNA expression in tthe serum of DR patients. The qRT-PCR showed that the expression of miR-19b, miR-221 and miR-18b were significantly increased in DR group, and the difference were statistically significant (U=256.027, 125.515, 254.017; P<0.05), and in consistent with miRNA microarray screening results. The ROC curves showed that miR-19b(AUC=0.78, 95%CI=0.66-0.90), miR-221(AUC=0.89, 95%CI=0.81-0.97) and miR-18b (AUC=0.78, 95%CI=0.67-0.90) all had diagnostic efficacy for DR, and miR-221 was the most effective one.

Conclusions

The serum of patients with DR exist specific miRNA expression profiles, and these specific miRNAs may as a regulator by adjusting target gene to regulate the occurrence and development of DR. Of all the specific miRNAs markets, miR-221 may themost expective one.

表1 两组糖尿病患者血糖相关指标的比较(±s)
图1 微核糖核酸芯片聚类分析图中特异性表达的微核糖核酸
图2 实时荧光定量反转录-聚合酶链反应检测微核糖核酸相对表达量的比较图 图A示miR-19b的相对表达量;图B示miR-221的相对表达量;图C示miR-18b的相对表达量;图D示miR-19b、miR-221和miR-18b的相对表达量
图3 受试者工作特征曲线评价微核糖核酸对糖尿病视网膜病变的诊断效能图 图A示miR-19b的工作特征曲线;图B示miR-221的工作特征曲线;图C示miR-18b的工作特征曲线;图D示miR-19b、miR-221和miR-18b的工作特征曲线
[1]
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136.
[2]
Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy[J]. N Engl J Med, 2012, 366(13): 1227-1239.
[3]
Cheung N, Wong TY. Diabetic retinopathy and systemic vascular complications[J]. Prog Retin Eye Res, 2008, 27(2): 161-176.
[4]
Tang J, Kern TS. Inflammation in diabetic retinopathy[J]. Prog Retin Eye Res, 2011, 30(5): 343-358.
[5]
Cunha-Vaz J, Ribeiro L, Lobo C. Phenotypes and biomarkers of diabetic retinopathy[J]. Prog Retin Eye Res, 2014, 41: 90-111.
[6]
Mastropasqua R, Toto L, Cipollone F, et al. Role of microRNAs in the modulation of diabetic retinopathy[J]. Prog Retin Eye Res, 2014, 43: 92-107.
[7]
Simó R, Hernández C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence[J]. Prog Retin Eye Res, 2015, 48: 160-180.
[8]
Kowluru RA, Kowluru A, Mishra M, et al. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy[J]. Prog Retin Eye Res, 2015, 48: 40-61.
[9]
Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy[J]. Prog Retin Eye Res, 2016, 51: 156-186.
[10]
Benfey PN. Molecular biology: microRNA is here to stay[J]. Nature, 2003, 425(6955): 244-245.
[11]
Chien HY, Lee TP, Chen CY, et al. Circulating microRNA as a diagnostic marker in populations with type 2 diabetes mellitus and diabetic complications[J]. J Chin Med Assoc, 2015, 78(4): 204-211.
[12]
American Diabetes Association. Diagnosis and classification of diabetes mellitus[J]. Diabetes Care, 2014, 37(Suppl 1): S81-S90.
[13]
Wilkinson CP, Ferris FL, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682.
[14]
Klein BE. Reduction in risk of progression of diabetic retinopathy[J]. N Engl J Med, 2010, 363(3): 287-288.
[15]
Aiello LP. Angiogenic pathways in diabetic retinopathy[J]. N Engl J Med, 2005, 353(8): 839-841.
[16]
Roy S, Bae E, Amin S, et al. Extracellular matrix, gap junctions, and retinal vascular homeostasis in diabetic retinopathy[J]. Exp Eye Res, 2015, 133: 58-68.
[17]
Reiter CE, Gardner TW. Functions of insulin and insulin receptor signaling in retina: possible implications for diabetic retinopathy[J]. Prog Retin Eye Res, 2003, 22(4): 545-562.
[18]
Simó R, Sundstrom JM, Antonetti DA. Ocular Anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy[J]. Diabetes Care, 2014, 37: 893-899.
[19]
Cheung N, Wong IY, Wong TY. Ocular anti-VEGF therapy for diabetic retinopathy: overview of clinical efficacy and evolving applications[J]. Diabetes Care, 2014, 37(4): 900-905.
[20]
Williams M, Hogg RE, Chakravarthy U. Antioxidants and diabetic retinopathy[J]. Curr Diab Rep, 2013, 13(4): 481-487.
[21]
Behl T, Kaur I, Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy[J]. Surv Ophthalmol, 2016, 61(2): 187-196.
[22]
Zhang W, Liu H, Rojas M, et al. Anti-inflammatory therapy for diabetic retinopathy[J]. Immunotherapy, 2011, 3(5): 609-628.
[23]
Durham JT, Herman IM. Microvascular modifications in diabetic retinopathy[J]. Curr Diab Rep, 2011, 11(4): 253-264.
[24]
Zhang L, Chen B, Tang L. Metabolic memory: mechanisms and implications for diabetic retinopathy[J]. Diabetes Res Clin Pract, 2012, 96(3): 286-293.
[25]
Kowluru RA. Mitochondria damage in the pathogenesis of diabetic retinopathy and in the metabolic memory associated with its continued progression[J]. Curr Med Chem, 2013, 20(26): 3226-3233.
[26]
Frank RN. Diabetic retinopathy[J]. N Engl J Med, 2004, 350(1): 48-58.
[27]
Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review[J]. JAMA, 2007, 298(8): 902-916.
[28]
Einarsdóttir AB, Stefánsson E. Prevention of diabetic retinopathy[J]. Lancet, 2009, 373(9672): 1316-1318.
[29]
Ockrim Z, Yorston D. Managing diabetic retinopathy[J]. BMJ, 2010, 341: c5400.
[30]
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones[J]. Cell, 2014, 157(1): 77-94.
[31]
Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease[J]. Cell, 2012, 148(6): 1172-1187.
[32]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
[33]
Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics[J]. J Cell Physiol, 2016, 231(1): 25-30.
[34]
Suárez Y, Fernández-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis[J]. Proc Natl Acad Sci U S A, 2008, 105(37): 14082-14087.
[35]
Kovacs B, Lumayag S, Cowan C, et al. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats[J]. Invest Ophthalmol Vis Sci, 2011, 52(7): 4402-4409.
[36]
Wu JH, Gao Y, Ren AJ, et al. Altered microRNA expression profiles in retinas with diabetic retinopathy[J]. Ophthalmic Res, 2012, 47(4): 195-201.
[37]
Wang C, Wang S, Zhao P, et al. MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression[J]. J Cell Biochem, 2012, 113(6): 2040-2046.
[38]
Dai R, Li J, Liu Y, et al. miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27(Kip1)- and MEK/ERK-mediated cell cycle regulation[J]. Biol Chem, 2010, 391(7): 791-801.
[39]
Kedde M, van Kouwenhove M, Zwart W, et al. A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility[J]. Nat Cell Biol, 2010, 12(10): 1014-1020.
[40]
Lolli A, Lambertini E, Penolazzi L, et al. Pro-chondrogenic effect of miR-221 and slug depletion in human MSCs[J]. Stem Cell Rev, 2014, 10(6): 841-855.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 杜娟, 宋波, 颜晓明, 牛佳鸣, 林元龙, 陈晓红, 李锦, 梁晗, 张铮, 李宇欧, 王福祥, 邵冰. 外周血单个核细胞内人类免疫缺陷病毒DNA和RNA定量对病毒转录活性的区分[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 165-171.
[3] 赵纪强, 赵济全, 霍枫, 何朝辉. 心脏死亡器官捐献大鼠模型肝脏和血清微小核糖核酸表达谱分析[J]. 中华移植杂志(电子版), 2021, 15(05): 262-269.
[4] 孙睿, 梁辉, 张颖, 邓琼, 胡七一, 张圣平, 张建文, 王铸. 基因芯片分析孤儿核受体NURR1上调表达对前列腺癌LNCaP细胞基因表达谱的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(01): 81-85.
[5] 罗红, 袁昌亮, 陈岚. MiR-3202对高糖诱导的人视网膜血管内皮细胞损伤的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(03): 155-160.
[6] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[7] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[8] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[9] 李茹月, 李明华, 张凯文, 张悦, 牟大鹏, 王宁利, 刘含若. 早期筛查老年人群糖尿病视网膜病变的卫生经济学分析[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 216-221.
[10] 李茹月, 刘含若. 卫生经济学评价常见致盲眼病筛查的进展[J]. 中华眼科医学杂志(电子版), 2021, 11(02): 94-98.
[11] 丁云鹤, 严棽棽, 王璐, 陈燕云, 宋婷婷, 张璐, 李哲清, 杨智, 田蓓. 增殖性糖尿病视网膜病变虹膜新生血管的多模态临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 8-13.
[12] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
[13] 冉启玉, 杜鹏宇, 孔蕾, 孙冰. 神经酰胺与糖尿病及其并发症关系研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 158-162.
[14] 杨莲, 罗争, 龚娇. 合并阻塞性睡眠呼吸暂停低通气综合征对老年人2型糖尿病视网膜病变的影响[J]. 中华老年病研究电子杂志, 2022, 09(03): 33-36.
[15] 李伟, 王青. 延续性护理干预对老年2型糖尿病视网膜病变患者血糖和视力水平的控制效果[J]. 中华老年病研究电子杂志, 2021, 08(03): 48-51.
阅读次数
全文


摘要