切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (04) : 241 -246. doi: 10.3877/cma.j.issn.2095-2007.2023.04.010

综述

深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展
李京珂, 张妍春(), 武佳懿, 任秀瑜   
  1. 710004 西安市人民医院(西安市第四医院)眼科 陕西省眼科医院糖尿病视网膜病变中心 西北大学附属人民医院 西安市眼底病研究所
    710054 西安交通大学人工智能与机器人研究所
  • 收稿日期:2023-05-01 出版日期:2023-08-28
  • 通信作者: 张妍春
  • 基金资助:
    陕西省重点研发计划项目(2021SF-162); 西安市科技计划重大研究项目(201805104YX12SF38(3)); 西安市人民医院(西安市第四医院)科研孵化基金项目(FZ-59); 白求恩-朗沐科研发展专项基金项目(IIT)(BJ2020IIT001); Alcon资助项目(IIT#75019437)

Deep learning for diabetic retinopathy screening, classification and management

Jingke Li, Yanchun Zhang(), Jiayi Wu, Xiuyu Ren   

  1. Shaanxi Eye Hospital, Xi′an People′s Hospital (Xi′an Fourth Hospital), Diabetes Retinopathy Center of Shaanxi Provincial Eye Hospital, Affiliated People′s Hospital of Northwest University, Xi′an Ocular Fundus Disease Research Institute, Xi′an 710004, China
    The Institute of Artificial Intelligence and Robotics, Xian Jiaotong University, Xi′an 710054, China
  • Received:2023-05-01 Published:2023-08-28
  • Corresponding author: Yanchun Zhang
引用本文:

李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.

Jingke Li, Yanchun Zhang, Jiayi Wu, Xiuyu Ren. Deep learning for diabetic retinopathy screening, classification and management[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(04): 241-246.

基于深度学习(DL)的人工智能技术(AI)在糖尿病性视网膜病变(DR)的应用研究中表现出了良好的效果和巨大的潜力,与远程医疗技术结合对于基层筛查和监测DR患者,可显著提高工作效率。目前,DL应用于DR的研究中还面临着匹配临床需求、可解释性、技术瓶颈以及医师与患者对DL系统的接受度等问题。本文中笔者就近年来DL技术在DR筛查、评级、预测和优化管理等方面的研究进展进行综述。

Artificial intelligence technology (AI) based on deep learning (DL) has shown good results and great potential in the application research of diabetes retinopathy (DR). Combining with telemedicine technology can significantly improve the work efficiency for grassroots screening and monitoring DR patients. At present, the application of DL in DR research still faces issues such as matching clinical needs, interpretability, technical bottlenecks, and the acceptance of DL systems by physicians and patients. The research progress of DL technology in DR screening, rating, prediction, and optimization management in recent years was reviewed in this paper.

表1 国际临床糖尿病视网膜病变及糖尿病黄斑水肿严重程度量表
表2 常用糖尿病视网膜病变检查方法比较
技术方法 适宜检测DR病变 优点及适用阶段 缺点
直接检眼镜;裂隙灯显微镜+前置镜;间接检眼镜 HE,EX,CWS,纤维血管膜,TRD,视网膜裂孔,视盘异常,明显的MA、NVE、NVD、DME、IRMA等血管异常 适合移动,价格低;适用于DR全程检查 需散瞳;对小的IRMA敏感度低;无法进行回顾性的审核;需要专业眼科医师,难以满足DR筛查需求及保证准确性
FP HE,EX,CWS,纤维血管膜,TRD,视网膜裂孔,视盘异常,明显的MA、NVE、NVD、DME、IRMA等血管异常 可随时对眼底表现进行评估;大量应用于DR筛查及监测 可能需要散瞳;检查范围有限
SLO HE,EX,CWS,纤维血管膜,TRD,视网膜裂孔,视盘异常,明显的MA、NVE、NVD、DME、IRMA等血管异常 检查评估范围大,利于发现周边病变 昂贵;无法在基层推广
FFA 视网膜血管循环,血管渗漏,NPA,IRMA,NVE,NVD,DME,FAZ 用于评估可能危及视力DR的严重程度、全视网膜光凝治疗效果及黄斑水肿的激光治疗 有创性检查,需要对全身状况进行评估;检查范围有限;无法在基层推广
UWFA 视网膜血管循环,血管渗漏,NPA,IRMA,NVE,NVD,DME,FAZ 同FFA,但检查评估范围更大 有创性检查;昂贵;无法在基层推广
OCTA FAZ、MA、IRMA、NVE、NVD 无创;分层评估视网膜及脉络膜血管形态及灌注情况 无血流信号的血管无法显影;无法判断血管是否渗漏;能显示的视网膜范围尚有限;昂贵,难以在基层推广普及
OCT 视网膜增厚,视网膜内水肿或囊腔、高反射点,视网膜下液,黄斑前膜,玻璃体黄斑牵拉 无创;评估及动态监测DME的最佳方法;评估玻璃体视网膜界面的最佳方法;有时用于DR早期筛查 可能需要散瞳;昂贵,难以在基层推广普及
表3 用于DR检测、分级和分割的眼底影像公开数据集
名称 时间 图片(张) 分辨率(像素) 数据集利用 拍摄(°) 任务 多专家标注
FP              
DRIVE[11] 2004 40 768×584 血管及EX 45 分割血管
DIARETDB0[12] 2006 130 1500×1152 血管及EX 50 DR检测和分级
DiaRetDB1[13] 2007 89 1500×1152 血管及EX 50 DR检测和分级
DRiDB[14] 2013 50 768×584 MA,HE、EX,NVE 45 检测病灶,分割视盘、黄斑、血管
E-Ophtha[15] 2013 463 多样 MA及EX 50 EX及MA检测
DR1[16] 2014 1014 640×480 EX、HE和MA 45 DR检测
DR2[17] 2014 520 867×575 所有特征 45 DR检测
Messidor[18] 2014 1200 1440×960,2240×1488,2304×1536 HE及EX 45 DR及DME分级
KaggleEyePACS 2015 88702 多样 所有特征 DR分级
IDRiD[19] 2018 516 4288×2848 MA,EX,HE 50 DR分级与病变分割
KaggleAPTOS 2019 2021 5590 多样 所有特征 DR分级
DDR[20] 2019 12522 多样 所有特征 45 DR分级与病变分割
Messidor 2[18] NR 1748 多样 EX,HE 45 DR分级
STARE[21] 2017 400 700×605 血管 35 视网膜血管分割
CHASE-DB1[22] 2012 28(儿童) 1280×960 血管 30 视网膜血管分割
ROC[23] 2009 100 768×576,1058×1061,1389×1383 MAs 45 HE和MA检测
ARIA[24] 2017 143 768×576 MA、HE,EX 50 DR分级和血管分割
FFA              
FFA PhotographsCF[25] 2012 140 576×720 所有特征 DR分级和疾病检测
FFA Photographs[26] 2014 70 576×720 MAs,血管 DR分级和病变检测
OCT              
Rabbani 2015 24 糖尿病眼病
OCTID[27] 2018 470 512×1024 黄斑水肿 DR分类
OCTAGON[28] 2019 213 320×320 FAZ区域及血管分割 DR检测
表4 不同国家的AI DR筛查项目概览
[1]
Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, Jan 2022, 183: 109-119.
[2]
Teo ZL, Tham YC, Yu M, et al. Do we have enough ophthalmologists to manage vision-threatening diabetic retinopathy?[J]. Eye, 2020, 34(7): 1255-1261.
[3]
Tan G, Cheung N, Simo R, et al. Diabetic macular oedema[J]. Lancet Diabetes Endocrinol, 2017, 5(2): 143-155.
[4]
Wilkinson CP, Ferris FL, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682.
[5]
Bresnick GH, Mukamel DB, Dickinson JC, et al. A screening approach to the surveillance of patients with diabetes for the presence of vision-threatening retinopathy[J]. Ophthalmology, 2000, 107(1): 19-24.
[6]
Wong TY, Sabanayagam C. Strategies to tackle the global burden of diabetic retinopathy: from epidemiology to artificial intelligence[J]. Ophthalmologica, 2020, 243(1): 9-20.
[7]
Vujosevic S, Aldington SJ, Silva P, et al. Screening for diabetic retinopathy: new perspectives and challenges[J]. The Lancet Diabetes & Endocrinology, 2020, 8(4): 337-347.
[8]
Gunasekeran DV, Ting DS, Tan GS, et al. Artificial intelligence for diabetic retinopathy screening, prediction and management[J]. Current opinion in ophthalmology, 2020, 31(5): 357-365.
[9]
范雯,王晓玲,马枭,等. 基于超广角荧光素眼底血管造影图像行糖尿病视网膜病变分期的多模态深度学习模型研究[J]. 中华眼底病杂志202238(2):139-145.
[10]
段恺睿,张弘. 人工智能在眼科光相干断层扫描图像中的应用[J]. 中华实验眼科杂志202240(1):83-87.
[11]
Wang S, Yin Y, Cao G, et al. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning[J]. Neurocomputing, 2015, 149: 708-717.
[12]
Kauppi T, Kalesnykiene V, Kämäräinen JK, et al. DIARETDB 0: Evaluation Database and Methodology for Diabetic Retinopathy Algorithms[G]Paper presented at: Proceedings of the British Machine Vision Conference 2007, University of Warwick, UK, September, 2007: 1-9.
[13]
Kauppi T, Kalesnykiene V, Kamarainen JK, et al. DIARETDB1 diabetic retinopathy database and evaluation protocol [G]. Paper presented at: Proceedings of the British Machine Vision Conference 2007, University of Warwick, UK, September, 2007: 10-13.
[14]
Prentašiĉ P, Lonĉariĉ S, Vatavuk Z, et al. Diabetic Retinopathy Image Database(DRiDB): A new database for diabetic retinopathy screening programs research[J]. 2013: 704-709.
[15]
Decenciere E, Cazuguel G, Zhang X, et al. TeleOphta: Machine learning and image processing methods for teleophthalmology[J]. Irbm, 2013, 34(2): 196-203.
[16]
Li X, Pang T, Xiong B, et al. Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification[G]. Paper presented at: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2017.
[17]
Naqvi SAG, Zafar MF, Haq I. Referral system for hard exudates in eye fundus[J]. Computers in biology and medicine, 2015, 64: 217-235.
[18]
Decencière E, Zhang X, Cazuguel G, et al. Feedback on a publicly distributed image database: the Messidor database[J]. Image Analysis & Stereology, 2014, 33(3): 231-234.
[19]
Porwal P, Pachade S, Kamble R, et al. Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research[J]. Data, 2018, 3(3): 25.
[20]
Li T, Gao Y, Wang K, et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening[J]. Information Sciences, 2019, 501: 511-522.
[21]
Mo J, Zhang L. Multi-level deep supervised networks for retinal vessel segmentation[J]. International journal of computer assisted radiology and surgery, 2017, 12(12): 2181-2193.
[22]
Fraz MM, Remagnino P, Hoppe A, et al. An ensemble classification-based approach applied to retinal blood vessel segmentation[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(9): 2538-2548.
[23]
Niemeijer M, Van Ginneken B, Cree MJ, et al. Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs[J]. IEEE transactions on medical imaging, 2009, 29(1): 185-195.
[24]
Arunkumar R, Karthigaikumar P. Multi-retinal disease classification by reduced deep learning features[J]. Neural Computing and Applications, 2017, 28(2): 329-334.
[25]
Hajeb Mohammad Alipour S, Rabbani H, Akhlaghi MR. Diabetic retinopathy grading by digital curvelet transform[J]. Comput Math Methods Med, 2012: 761901.
[26]
Hajeb Mohammad Alipour S, Rabbani H, Akhlaghi M. A new combined method based on curvelet transform and morphological operators for automatic detection of foveal avascular zone[J]. Signal, Image and Video Processing, 2014, 8(2): 205-222.
[27]
Gholami P, Roy P, Parthasarathy MK, et al. OCTID: Optical coherence tomography image database[J]. Computers & Electrical Engineering, 2020, 81: 106532.
[28]
Díaz M, Novo J, Cutrín P, et al. Automatic segmentation of the foveal avascular zone in ophthalmological OCT-A images[J]. PLoS One, 2019, 14(2): e0212364.
[29]
Adem K. Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks[J]. Expert Systems with Applications, 2018, 114: 289-295.
[30]
Lam C, Yi D, Guo M, et al. Automated detection of diabetic retinopathy using deep learning[J]. AMIA summits on translational science proceedings, 2018: 147.
[31]
Abràmoff MD, Lou Y, Erginay A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning[J]. Investigative ophthalmology & visual science, 2016, 57(13): 5200-5206.
[32]
García G, Gallardo J, Mauricio A, et al. Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images[G], 2017.
[33]
Zhang W, Zhong J, Yang S, et al. Automated identification and grading system of diabetic retinopathy using deep neural networks[J]. Knowledge-Based Systems, 2019, 175: 12-25.
[34]
Hamwood J, Alonso-Caneiro D, Read SA, et al. Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers[J]. Biomedical optics express, 2018, 9(7): 3049-3066.
[35]
Yang D, Sun Z, Shi J, et al. A multitask deep-learning system for assessment of diabetic macular ischemia on optical coherence tomography angiography images[J]. Retina, 2022, 42(1): 184-194.
[36]
Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[J]. NPJ digital medicine, 2018, 1(1): 1-8.
[37]
Rajalakshmi R, Subashini R, Anjana RM, et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence[J]. Eye, 2018, 32(6): 1138-1144.
[38]
Ribeiro L, Oliveira CM, Neves C, et al. Screening for Diabetic Retinopathy in the Central Region of Portugal. Added Value of Automated 'Disease/No Disease'Grading[J]. Ophthalmologica, 2015, 233(2): 96-103.
[39]
Xie Y, Nguyen QD, Hamzah H, et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study[J]. The Lancet Digital Health, 2020, 2(5): e240-e249.
[40]
Ting DSW, Cheung CYL, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. Jama, 2017, 318(22): 2211-2223.
[41]
Gulshan V, Rajan RP, Widner K, et al. Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India[J]. JAMA ophthalmology, 2019, 137(9): 987-993.
[42]
Ruamviboonsuk P, Krause J, Chotcomwongse P, et al. Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program[J]. NPJ digital medicine, 2019, 2(1): 1-9.
[43]
Li Z, Keel S, Liu C, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs[J]. Diabetes care, 2018, 41(12): 2509-2516.
[44]
Bellemo V, Lim G, Rim TH, et al. Artificial intelligence screening for diabetic retinopathy: the real-world emerging application[J]. Current Diabetes Reports, 2019, 19(9): 1-12.
[45]
Hansen MB, Tang H, Wang S, et al. Automated detection of diabetic retinopathy in three European populations[J]. Journal of Clinical & Experimental Ophthalmology, 2016, 7(4): 170-178.
[46]
Son J, Shin JY, Kim HD, et al. Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images[J]. Ophthalmology, 2020, 127(1): 85-94.
[47]
Hwang DK, Yu WK, Lin TC, et al. Smartphone-based diabetic macula edema screening with an offline artificial intelligence[J]. Journal of the Chinese Medical Association, 2020, 83(12): 1102-1106.
[48]
Rasti R, Allingham MJ, Mettu PS, et al. Deep learning-based single-shot prediction of differential effects of anti-VEGF treatment in patients with diabetic macular edema[J]. Biomedical Optics Express, 2020, 11(2): 1139-1152.
[49]
Zhang L, Yuan M, An Z, et al. Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: A cross-sectional study of chronic diseases in central China[J]. PloS one, 2020, 15(5): e0233166.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 旺久, 陈军, 朱霞, 米玛央金, 赵胜, 陈欣林, 李建华, 王双. 山南市妇幼保健院开展胎儿系统超声筛查的效果分析[J]. 中华医学超声杂志(电子版), 2023, 20(07): 728-733.
[3] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[4] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[5] 李圣鹏, 方爱蓝, 刘诗宁, 王丹, 刘湘奇. 下颌阻生第三磨牙拔除难度的预测因素与评估方法[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 441-445.
[6] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[7] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[8] 王万川, 麦广智, 张晓槟, 冯家豪. 腹腔镜下LAR术治疗低位直肠癌保肛术中钉仓数量与术后LARS的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 491-496.
[9] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[10] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[11] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[12] 王小娜, 谭微, 李悦, 姜文艳. 预测性护理对结直肠癌根治术患者围手术期生活质量、情绪及并发症的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 525-529.
[13] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
[14] 张郁妍, 胡滨, 张伟红, 徐楣, 朱慧, 羊馨玥, 刘海玲. 妊娠中期心血管超声参数与肝功能的相关性及对不良妊娠结局的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 499-504.
[15] 王亚丹, 吴静, 黄博洋, 王苗苗, 郭春梅, 宿慧, 王沧海, 王静, 丁鹏鹏, 刘红. 白光内镜下结直肠肿瘤性质预测模型的构建与验证[J]. 中华临床医师杂志(电子版), 2023, 17(06): 655-661.
阅读次数
全文


摘要