切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (01) : 6 -11. doi: 10.3877/cma.j.issn.2095-2007.2023.01.002

论著

糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究
张新媛(), 王麒雲, 陈晓思   
  1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科学与视觉科学重点实验室
  • 收稿日期:2022-04-06 出版日期:2023-02-28
  • 通信作者: 张新媛
  • 基金资助:
    国家自然科学基金面上项目(81170859,82070988); 国家自然科学基金国际合作重点项目(81561128015); 国家科技部国家重点研发计划项目(2016YFC1305604)

A co-culture system with retinal vascular endothelial cells and ganglion cells under simulated diabetic retinopathy condition

Xinyuan Zhang(), Qiyun Wang, Xiaosi Chen   

  1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Institute of Ophthalmology and Visual Sciences, Beijing 100730, China
  • Received:2022-04-06 Published:2023-02-28
  • Corresponding author: Xinyuan Zhang
引用本文:

张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.

Xinyuan Zhang, Qiyun Wang, Xiaosi Chen. A co-culture system with retinal vascular endothelial cells and ganglion cells under simulated diabetic retinopathy condition[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(01): 6-11.

目的

建立一种模拟糖尿病视网膜病变(DR)血管内皮细胞与神经细胞相互作用的二维体外模型。

方法

将大鼠视网膜微血管内皮细胞(RMECs)与神经节细胞(RGCs)通过0.4 μm聚碳酯膜微孔小室进行共培养。按照培养液葡萄糖浓度为分为高糖组和对照组。高糖组和对照组培养液的葡萄糖浓度分别为50.0 mM和5.5 mM。采用荧光倒置显微镜成像观察细胞形态;应用细胞增殖实验检测细胞的增殖情况;采用划痕实验和迁移实验检测细胞迁移的能力;采用管腔形成实验检测管腔的形成能力;使用碘化丙啶-烟酸己可碱实验观察细胞凋亡的情况。细胞迁移数目、凋亡率、管腔形成数量及交叉点数均符合正态分布,以(±s)表示,两组间比较采用独立样本t检验;细胞增殖力的光密度(OD)值和细胞迁移率为偏态分布,以中位数和四分位数描述,组间比较采用秩和检验。

结果

共培养模型细胞培养48 h后,共培养模型上室RGCs呈单层椭圆样贴壁生长,下室RMECs较不规则,均呈单层铺路石样生长,细胞间呈紧密连接状态。高糖组和对照组RMECs的OD值分别为1.163(1.142,1.188)和0.812(0.805,0.817);两组RGCs的OD值分别为0.723(0.709,0.759)和1.934(1.803,2.030),组间比较的差异均有统计学意义(Z=-6.069,-5.940;P<0.05)。高糖组和对照组RMECs的细胞迁移率分别为[53.64(37.69,65.88)%]和[32.25(22.34,42.85)%],前者迁移能力强于后者,组间比较的差异有统计学意义(Z=-2.841,P<0.05)。高糖组和对照组RMECs的迁移数分别为(164±31)个和(113±16)个;细胞凋亡率分别为(14.30±4.29)%和(9.65±3.43)%;管腔形成数分别为(23±5)个和(19±4)个;管腔交叉点数分别为(11±3)个和(13±2)个。两组RMECs迁移数、管腔形成数及凋亡率比较的差异均有统计学意义(t=-4.653,-2.137,-2.929;P<0.05);管腔交叉点数比较的差异无统计学意义(t=1.424,P>0.05)。高糖组和对照组RGCs细胞凋亡率分别为(6.91±1.15)%和(4.87±1.70)%。两组细胞凋亡率比较的差异有统计学意义(t=-2.446,P<0.05)。

结论

本研究建立的RMECs与RGCs藕联二维体外共培养模型具有与单细胞培养相同的表观,在高糖环境下,RMECs与RGCs的活性、凋亡、RMECs的迁移能力及管腔形成能力均表现为同步的病理生理改变,为DR的进一步机制研究奠定了模型基础。

Objective

To establish an 2D in vitro simulations, which model the interactions between retinal vascular endothelial cells (RMECs) and ganglion cells (RGC) under simulated diabetic retinopathy (DR) condition.

Methods

The rat RMECs and RGC were co-cultured in the Transwell (0.4 μm), cells were divided into the control group (5.5 mM ) and high glucose group (50.0 mM) according to the concentration of glucose in the culture medium. Cell morphology was observed by fluorescence inverted microscope imaging; cell proliferation assay, scratch and transwell migration assay as well as the lumen formation assay used to detect the capacity of the proliferation, migration, and lumen formation of RMECs and RGC. The apoptosis of cells was observed by PI/Hoechest experiment. The number of the cell migration, formed lumens and lumen intersections as well as the apoptosis rate in the two groups conformed to a normal distribution, were described as ±s, and compared by t testing. The optical density (OD) value of cell proliferation and cell migration rate in the two groups conformed to a non-normal distribution, were described using median and interquartile range, and comared by the Mann-Whitney U test.

Results

In the co-culture model, the RGCs in the upper chamber showed adherent growth as a oval-like monolayer, while the RMECs in the lower chamber were more irregular, as a single layer of paving stones, and tightly connected between cells. The OD value of cell proliferation in RMECs of the high glucose group and control group were 1.163 (1.142, 1.188) and 0.812 (0.805, 0.817); the OD value of RGCs in two groups were 0.723 (0.709, 0.759) and 1.934 (1.803, 2.030). There were both statistically significant differences in the OD value of cell proliferation of two cells between two groups (Z=-6.069, -5.940; P<0.05). The migration ability of RMECs in the high glucose group and control group were [53.64 (37.69, 65.88)]% and [32.25(22.34, 42.85)%], which the former group better than latter group and there was a significant difference between two groups (Z=-2.841, P<0.05). The migration score of RMECs in two groups were (164±31) and (113±16); the apoptosis rate were (14.30±4.29)% and (9.65±3.43)%; the number of lumen formation were (23±5) and (19±4); lumen intersections were (11±3) and (13±2), respectively. There were all statistically significant differences in the migration score, the number of lumen formation, and the apoptosis rate between two groups (t=-4.653, -2.137, -2.929; P<0.05); non-significant difference in the lumen intersections between groups (t=1.424, P>0.05). The apoptosis rate of RGCs in two groups were (6.91±1.15) % and (4.87±1.70)% with statistically significant differences between two groups (t=-2.446, P<0.05).

Conclusions

The 2D co-culture model of RMECs and RGCs has shown that there were the same performance as that of single cell culture in vitro. Under the high glucose environment, the cell activity, apoptosis, migration ability, and lumen formation ability of RMECs and the cell activity and apoptosis of RGCs with synchronous physiological and pathological changes, which laying a model foundation for further mechanism research of DR.

图1 高糖微环境聚碳酯膜微孔小室共培养模型的示意图 上下室分别接种视网膜神经节细胞和视网膜微血管内皮细胞
图3 共培养模型中48 h时细胞活性比较的柱状图 注:*P<0.05
图6 共培养模型中对照组和高糖组视网膜微血管内皮细胞管腔形成数的比较 图6A~图6B分别示48 h时倒置荧光显微镜下对照组和高糖组细胞的管腔形态(×200);图6C~图6D分别示48 h时细胞管腔形成数和细胞管腔形成交叉点数比较的点状图 注:*P<0.05
[1]
Qiu B, Zhao L, Zhang X, et al. Associations between diabetic retinal microvasculopathy and neuronal degeneration assessed by swept-source OCT and OCT angiography[J]. Front Med (Lausanne), 2021, 8: 778283.
[2]
Zhang X, Liu W, Wu S, et al. Calcium dobesilate for diabetic retinopathy: a systematic review and meta-analysis[J]. Sci China Life Sci, 2015, 58(1): 101-107.
[3]
Zhang X, Wang N, Barile GR, et al. Diabetic retinopathy: neuron protection as a therapeutic target[J]. Int J Biochem Cell Biol, 2013, 45(7): 1525-1529.
[4]
Zhang X, Lai D, Bao S, et al. Triamcinolone acetonide inhibits p38MAPK activation and neuronal apoptosis in early diabetic retinopathy[J]. Curr Mol Med, 2013, 13(6): 946-958.
[5]
Zhang X, Liu W, Song C, et al. Function of a soluble VEGF receptor 2 protein in vivo[J]. Invest Ophth Vis Sci, 2015, 56(7): 61.
[6]
Zhang X, Zeng H, Bao S, et al. Diabetic macular edema: new concepts in pathophysiology and treatment[J]. Cell Biosci, 2014, 4: 27.
[7]
Zhang X, Bao S, Hambly BD, et al. Vascular endothelial growth factor-A: a multifunctional molecular player in diabetic retinopathy[J]. Int J Biochem Cell Biol, 2009, 41(12): 2368-2371.
[8]
Zhang X, Chen M, Gillies MC. Two isoforms of Flk-1 transcripts in early diabetic rat retinas[J]. Curr Eye Res, 2012, 37(1): 73-79.
[9]
Zhang X, Bao S, Lai D, et al. Intravitreal triamcinolone acetonide inhibits breakdown of the blood-retinal barrier through differential regulation of VEGF-A and its receptors in early diabetic rat retinas[J]. Diabetes, 2008, 57(4): 1026-1033.
[10]
Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35(3): 556-564.
[11]
Nathan DM, Group DER. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview[J]. Diabetes Care, 2014, 37(1): 9-16.
[12]
Gaede P, Lund-Andersen H, Parving HH, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes[J]. N Engl J Med, 2008, 358(6): 580-591.
[13]
Matteucci A, Varano M, Mallozzi C, et al. Primary retinal cultures as a tool for modeling diabetic retinopathy: an overview[J]. Biomed Res Int, 2015: 364924.
[14]
Ghareeb AE, Lako M, Steel DH. Coculture techniques for modeling retinal development and disease, and enabling regenerative medicine[J]. Stem Cells Transl Med, 2020, 9(12): 1531-1548.
[15]
Trost A, Lange S, Schroedl F, et al. Brain and retinal pericytes: Origin, function and role[J]. Front Cell Neurosci, 2016, 10: 20.
[16]
Eyre JJ, Williams RL, Levis HJ. A human retinal microvascular endothelial-pericyte co-culture model to study diabetic retinopathy in vitro[J]. Exp Eye Res, 2020, 201: 108293.
[17]
Ding X, Gu R, Zhang M, et al. Microglia enhanced the angiogenesis, migration and proliferation of co-cultured RMECs[J]. BMC Ophthalmol, 2018, 18(1): 249.
[18]
Qiu AW, Huang DR, Li B, et al. IL-17A injury to retinal ganglion cells is mediated by retinal Müller cells in diabetic retinopathy[J]. Cell Death Dis, 2021, 12(11): 1057.
[19]
Wang Q, Zhang X, Wang K, et al. An in vitro model of diabetic retinal vascular endothelial dysfunction and neuroretinal degeneration[J]. J Diabetes Res, 2021, PMID: 9765119.
[20]
Zhu K, Hu X, Chen H, et al. Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI[J]. EBioMedicine, 2019, 49: 341-353.
[21]
Tan A, Li T, Ruan L, et al. Knockdown of Malat1 alleviates high-glucose-induced angiogenesis through regulating miR-205-5p/VEGF-A axis[J]. Exp Eye Res, 2021, 207: 108585.
[22]
Hu J, Wu Q, Li T, et al. Inhibition of high glucose-induced VEGF release in retinal ganglion cells by RNA interference targeting G protein-coupled receptor 91[J]. Exp Eye Res, 2013, 109: 31-39.
[23]
Xing X, Wang H, Niu T, et al. RUNX1 can mediate the glucose and O-GlcNAc-driven proliferation and migration of human retinal microvascular endothelial cells[J]. BMJ Open Diabetes Res Care, 2021, 9(1): e001898.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 林诗雯, 孙慧, 陈娜娜, 朱聪. 共培养促神经化策略在组织工程骨构建中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 293-299.
[3] 罗红, 袁昌亮, 陈岚. MiR-3202对高糖诱导的人视网膜血管内皮细胞损伤的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(03): 155-160.
[4] 杨园园, 朱新贤, 靳霞, 童晓文. 人间充质干细胞对乳腺癌细胞生长的影响研究[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 195-203.
[5] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[6] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[7] 李茹月, 李明华, 张凯文, 张悦, 牟大鹏, 王宁利, 刘含若. 早期筛查老年人群糖尿病视网膜病变的卫生经济学分析[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 216-221.
[8] 李茹月, 刘含若. 卫生经济学评价常见致盲眼病筛查的进展[J]. 中华眼科医学杂志(电子版), 2021, 11(02): 94-98.
[9] 丁云鹤, 严棽棽, 王璐, 陈燕云, 宋婷婷, 张璐, 李哲清, 杨智, 田蓓. 增殖性糖尿病视网膜病变虹膜新生血管的多模态临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 8-13.
[10] 霍剑, 段俊国, 朱柯宇, 艾家玲, 隋嘉庆. 芪明颗粒对非增生期糖尿病视网膜病变患者视网膜微循环状态影响的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(06): 333-338.
[11] 方立建, 魏文斌. 康柏西普玻璃体腔内注射联合阈值下微脉冲激光治疗糖尿病黄斑水肿的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(02): 90-96.
[12] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
[13] 冉启玉, 杜鹏宇, 孔蕾, 孙冰. 神经酰胺与糖尿病及其并发症关系研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 158-162.
[14] 杨莲, 罗争, 龚娇. 合并阻塞性睡眠呼吸暂停低通气综合征对老年人2型糖尿病视网膜病变的影响[J]. 中华老年病研究电子杂志, 2022, 09(03): 33-36.
[15] 李伟, 王青. 延续性护理干预对老年2型糖尿病视网膜病变患者血糖和视力水平的控制效果[J]. 中华老年病研究电子杂志, 2021, 08(03): 48-51.
阅读次数
全文


摘要