[1] |
Hendrick AM, Gibson MV, Kulshreshtha A. Diabetic Retinopathy[J]. Prim Care, 2015, 42(3): 451-464.
|
[2] |
Hammer M, Schweitzer D, Richter S, et al. Sodium fluorescein as a retinal pH indicator?[J]. Physiol Meas, 2005, 26(4): N9-N12.
|
[3] |
Yamamoto F, Borgula GA, Steinberg RH. Effects of light and darkness on pH outside rod photoreceptors in the cat retina[J]. Exp Eye Res, 1992, 54(5): 685-697.
|
[4] |
中华医学会眼科学会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2014年)[J]. 中华眼科杂志,2014,50(11):851-865.
|
[5] |
Ogurtsova K, Da RFJ, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040[J]. Diabetes Res Clin Pract, 2017, 128: 40-50.
|
[6] |
Ibanez-Bruron MC, Solebo AL, Cumberland PM, et al. Prevalence of diabetic retinopathy in children and young people living with diabetes: protocol for a systematic review[J]. BMJ Open, 2017, 7(11): e18578.
|
[7] |
Zhang G, Chen H, Chen W, et al. Prevalence and risk factors for diabetic retinopathy in China: a multi-hospital-based cross-sectional study[J]. Br J Ophthalmol, 2017, 101(12): 1591-1595.
|
[8] |
Sabanayagam C, Yip W, Ting DS, et al. Ten Emerging Trends in the Epidemiology of Diabetic Retinopathy[J]. Ophthalmic Epidemiol, 2016, 23(4): 209-222.
|
[9] |
Flaxman SR, Bourne R, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis[J]. Lancet Glob Health, 2017, 5(12): e1221-e1234.
|
[10] |
Chan JC, Zhang Y, Ning G. Diabetes in China: a societal solution for a personal challenge[J]. Lancet Diabetes Endocrinol, 2014, 2(12): 969-979.
|
[11] |
Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310(9): 948-959.
|
[12] |
James M, Turner DA, Broadbent DM, et al. Cost effectiveness analysis of screening for sight threatening diabetic eye disease[J]. BMJ, 2000, 320(7250): 1627-1631.
|
[13] |
Larsen MB, Henriksen JE, Grauslund J, et al. Prevalence and risk factors for diabetic retinopathy in 17 152 patients from the island of Funen, Denmark[J]. Acta Ophthalmol, 2017, 95(8): 778-786.
|
[14] |
Vujosevic S, Midena E. Diabetic retinopathy in Italy: Epidemiology data and telemedicine screening programs[J]. J Diabetes Res, 2016, 2016: 3627465.
|
[15] |
Ponto KA, Koenig J, Peto T, et al. Prevalence of diabetic retinopathy in screening-detected diabetes mellitus: results from the gutenberg Health Study (GHS)[J]. Diabetologia, 2016, 59(9): 1913-1919.
|
[16] |
Thomas RL, Dunstan FD, Luzio SD, et al. Prevalence of diabetic retinopathy within a national diabetic retinopathy screening service[J]. Br J Ophthalmol, 2015, 99(1): 64-68.
|
[17] |
Willis JR, Doan QV, Gleeson M, et al. Vision-related functional burden of diabetic retinopathy across severity levels in the united states[J]. JAMA Ophthalmol, 2017, 135(9): 926-932.
|
[18] |
Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35(3): 556-564.
|
[19] |
Liu L, Wu X, Liu L, et al. Prevalence of diabetic retinopathy in mainland China: a meta-analysis[J]. PLoS One, 2012, 7(9): e45264.
|
[20] |
Jenkins AJ, Joglekar MV, Hardikar AA, et al. Biomarkers in diabetic retinopathy[J]. Rev Diabet Stud, 2015, 12(1-2): 159-195.
|
[21] |
Calderon GD, Juarez OH, Hernandez GE, et al. Oxidative stress and diabetic retinopathy: development and treatment[J]. Eye (Lond), 2017, 31(8): 1122-1130.
|
[22] |
Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient[J]. Exp Diabetes Res, 2007, 2007: 61038.
|
[23] |
Ng ZX, Kuppusamy UR, Iqbal T, et al. Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with pro-inflammatory, oxidative-glycation markers and sRAGE in diabetic retinopathy[J]. Gene, 2013, 521(2): 227-233.
|
[24] |
Galvez MI. Protein kinase C inhibitors in the treatment of diabetic retinopathy(Review)[J]. Curr Pharm Biotechnol, 2011, 12(3): 386-391.
|
[25] |
Mesquita J, Castro-de-Sousa JP, Vaz-Pereira S, et al. Evaluation of the growth factors VEGF-a and VEGF-β in the vitreous and serum of patients with macular and retinal vascular diseases[J]. Growth Factors, 2018, 36(1-2): 48-57.
|
[26] |
Chen H, Zhang X, Liao N, et al. Assessment of biomarkers using multiplex assays in aqueous humor of patients with diabetic retinopathy[J]. BMC Ophthalmol, 2017, 17(1): 176.
|
[27] |
Feng S, Yu H, Yu Y, et al. Levels of Inflammatory Cytokines IL-1beta, IL-6, IL-8, IL-17A, and TNF-alpha in aqueous humour of patients with diabetic retinopathy[J]. J Diabetes Res, 2018, 2018: 8546423.
|
[28] |
Abu EA, Struyf S, Kangave D, et al. Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy[J]. Eur Cytokine Netw, 2006, 17(3): 155-165.
|
[29] |
Ogata N, Matsuoka M, Matsuyama K, et al. Plasma concentration of pigment epithelium-derived factor in patients with diabetic retinopathy[J]. J ClinEndocrinol Metab, 2007, 92(3): 1176-1179.
|
[30] |
Al KE, Xu Z, Al RS, et al. Vitreous levels of placental growth factor correlate with activity of proliferative diabetic retinopathy and are not influenced by bevacizumab treatment[J]. Eye (Lond), 2017, 31(4): 529-536.
|
[31] |
Burgos R, Mateo C, Canton A, et al. Vitreous levels of IGF-I, IGF binding protein 1, and IGF binding protein 3 in proliferative diabetic retinopathy: a case-control study[J]. Diabetes Care, 2000, 23(1): 80-83.
|
[32] |
Dmitriev AV, Henderson D, Linsenmeier RA. Development of diabetes-induced acidosis in the rat retina[J]. Exp Eye Res, 2016, 149: 16-25.
|
[33] |
Budzynski E, Wangsa-Wirawan N, Padnick-Silver L, et al. Intraretinal pH in diabetic cats[J]. Curr Eye Res, 2005, 30(3): 229-240.
|
[34] |
Padnick-Silver L, Linsenmeier RA. Effect of hypoxemia and hyperglycemia on pH in the intact cat retina[J]. Arch Ophthalmol, 2005, 123(12): 1684-1690.
|
[35] |
Dreffs A, Henderson D, Dmitriev AV, et al. Retinal pH and Acid Regulation During Metabolic Acidosis[J]. Curr Eye Res, 2018, 43(7): 902-912.
|
[36] |
Tsacopoulos M, Levy S. Intraretinal acid-base studies using pH glass microelectrodes: effect of respiratory and metabolic acidosis and alkalosis on inner-retinal pH[J]. Exp Eye Res, 1976, 23(5): 495-504.
|
[37] |
Miyake T, Nishiwaki A, Yasukawa T, et al. Possible implications of acid-sensing ion channels in ischemia-induced retinal injury in rats[J]. Jpn J Ophthalmol, 2013, 57(1): 120-125.
|
[38] |
Yang Z, Alvarez BV, Chakarova C, et al. Mutant carbonic anhydrase 4 impairs pH regulation and causes retinal photoreceptor degeneration[J]. Hum Mol Genet, 2005, 14(2): 255-265.
|
[39] |
Tan J, Xu YP, Liu GP, et al. Involvement of acid-sensing ion channel 1a in functions of cultured human retinal pigment epithelial cells[J]. J Hua zhong Univ Sci Technolog Med Sci, 2013, 33(1): 137-141.
|
[40] |
Andersen MV. Changes in the vitreous body pH of pigs after retinal xenon photocoagulation[J]. Acta Ophthalmol (Copenh), 1991, 69(2): 193-199.
|
[41] |
Davson H, Luck CP. A comparative study of the total carbon dioxide in the ocular fluids, cerebrospinal fluid, and plasma of some mammalian species[J]. J Physiol, 1956, 132(2): 454-464.
|
[42] |
Wenzel A, Grimm C, Samardzija M, et al. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration[J]. Prog Retin Eye Res, 2005, 24(2): 275-306.
|
[43] |
Lu DW, Chang CJ, Wu JN. The changes of vitreous pH values in an acute glaucoma rabbit model[J]. J Ocul Pharmacol Ther, 2001, 17(4): 343-350.
|
[44] |
Holekamp NM. The vitreous gel: more than meets the eye[J]. Am J Ophthalmol, 2010, 149(1): 32-36.
|
[45] |
Locci E, Scano P, Rosa MF, et al. A metabolomic approach to animal vitreous humor topographical composition: a pilot study[J]. PLoS One, 2014, 9(5): e97773.
|
[46] |
Yamamoto F, Steinberg RH. Effects of intravenous acetazolamide on retinal pH in the cat[J]. Exp Eye Res, 1992, 54(5): 711-718.
|
[47] |
Murray DL, Feke GT, Weiter JJ. Preretinal pH changes in the rabbit under conditions of light and dark[J]. Exp Eye Res, 1991, 53(6): 717-722.
|
[48] |
Lorget F, Parenteau A, Carrier M, et al. Characterization of the pH and temperature in the rabbit, pig, and monkey eye: Key parameters for the development of long-acting delivery ocular strategies[J]. Mol Pharm, 2016, 13(9): 2891-2896.
|
[49] |
Landers MR, Watson JS, Ulrich JN, et al. Determination of retinal and vitreous temperature in vitrectomy[J]. Retina, 2012, 32(1): 172-176.
|
[50] |
Rossi M, Di Censo F, Di Censo M, et al. Changes in aqueous humor pH after femtosecond laser-assisted cataract surgery[J]. J Refract Surg, 2015, 31(7): 462-465.
|
[51] |
Veselovsky J, Olah Z, Vesela A, et al. The pH reaction in aqueous humor to antiglaucoma agents of various concentrations and pH levels[J]. CeskSlov Oftalmol, 2001, 57(5): 291-297.
|
[52] |
Gao BB, Clermont A, Rook S, et al. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation[J]. Nat Med, 2007, 13(2): 181-188.
|
[53] |
Abhary S, Burdon KP, Gupta A, et al. Diabetic retinopathy is not associated with carbonic anhydrase gene polymorphisms[J]. Mol Vis, 2009, 15: 1179-1184.
|
[54] |
Shah CP, Garg SJ, Vander JF, et al. Outcomes and risk factors associated with endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents[J]. Ophthalmology, 2011, 118(10): 2028-2034.
|
[55] |
Thrimawithana TR, Young S, Bunt CR, et al. Drug delivery to the posterior segment of the eye[J]. Drug Discov Today, 2011, 16(5-6): 270-277.
|