切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 45 -50. doi: 10.3877/cma.j.issn.2095-2007.2019.01.007

论著

糖尿病视网膜病变与特发性黄斑裂孔患者玻璃体酸碱度的检测与比较
张先森1, 李浩然1, 李双双1, 邓爱军2,()   
  1. 1. 261053 山东省潍坊医学院眼科学教研室
    2. 261000 山东省潍坊医学院附属医院眼科中心
  • 收稿日期:2019-01-20 出版日期:2019-02-28
  • 通信作者: 邓爱军
  • 基金资助:
    山东省科技发展计划项目(2013YD21014)

Detection and comparison of vitreous pondus hydrogenii in patients with diabetic retinopathy and idiopathic macular hole

Xiansen Zhang1, Haoran Li1, Shuangshuang Li1, Aijun Deng2,()   

  1. 1. Department of Ophthalmology, Weifang Medical College, Weifang 261053, China
    2. Ophthalmological Center of Affiliated Hospital, Shandong Province Weifang Medical University, Weifang 261000, China
  • Received:2019-01-20 Published:2019-02-28
  • Corresponding author: Aijun Deng
引用本文:

张先森, 李浩然, 李双双, 邓爱军. 糖尿病视网膜病变与特发性黄斑裂孔患者玻璃体酸碱度的检测与比较[J]. 中华眼科医学杂志(电子版), 2019, 09(01): 45-50.

Xiansen Zhang, Haoran Li, Shuangshuang Li, Aijun Deng. Detection and comparison of vitreous pondus hydrogenii in patients with diabetic retinopathy and idiopathic macular hole[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(01): 45-50.

目的

检测并比较糖尿病视网膜病变(DR)与特发性黄斑裂孔(IMH)患者玻璃体酸碱度(pH)值,探究离体玻璃体暴露于室温22℃的空气环境中pH值的变化规律。

方法

选择山东省潍坊医学院附属医院眼科中心2018年5月至2018年12月收治的DR患者15例(15只眼),为DR组;同一时期收治的IMH患者16例(16只眼),为IMH组。所有患者均由同一术者实施标准三切口23 G玻璃体切割术。术中,采集玻璃体腔中部未被稀释及污染的玻璃体标本0.2~0.5 ml,立即转移至灭菌量杯中。使用已较准的pH30A笔式酸度计行pH值检测,并于5 min、10 min、15 min、20 min、25 min、30 min及60 min后复测。全部检测数据中,年龄和玻璃体pH值以均数±标准差(±s )表示。组间数据差异的比较,采用独立样本t检验;性别的组间比较,采用Fisher确切概率法。以P<0.05为差异有统计学意义。

结果

所有患者离体的玻璃体均呈弱碱性,DR组患者玻璃体pH值为(7.83±0.24),IMH组患者玻璃体pH值为(7.66±0.11)。DR组患者玻璃体pH值明显高于IMH组患者玻璃体pH值,差异具有统计学意义(t=2.45,P<0.05)。DR组与IMH组患者玻璃体离体后暴露于室温22℃及空气中,其pH值短时间内即明显升高,且在一定时间内随时间延长而逐渐升高。

结论

DR患者与IMH患者玻璃体均呈弱碱性。其中,DR患者玻璃体pH值高于IMH患者玻璃体pH值;且全部患者的玻璃体离体后,其pH值在一定时间内随暴露于室温的空气中时间的延长而增加。

Objective

The aim of this study was detect and compare the vitreous acidity and alkalinity (pH) in patients with diabetic retinopathy (DR) and idiopathic macular hole (IMH), and to explore the changes of pH in vitreous exposed to air and room temperature at 22℃.

Methods

Fifteen patients (15 eyes) with DR were admitted to the Ophthalmological Center of Affiliated Hospital of Weifang Medical College from May 2018 to December 2018 as DR group, and 16 patients (16 eyes) with IMH were admitted to the same period as IMH group. All patients underwent standard three-incision 23 G vitrectomy by the same surgeon. During the operation, 0.2-0.5 ml of undiluted and contaminated vitreous specimens in the middle of the vitreous cavity were collected and immediately transferred to the sterilization cup. The pH value was measured with a standard pH30A pen acidity meter, and was repeated after 5 min, 10 min, 15 min, 20 min, 25 min, 30 min and 60 min. In all the data, age and vitreous pH were expressed as mean (±s ). Independent sample t test was used to compare the differences between groups, and Fisher's exact probability method was used to compare the differences between groups. The difference was statistically significant with P<0.05.

Results

The vitreous pH values of DR group and IMH group were (7.83±0.24) and (7.66±0.11) respectively. The vitreous pH value of DR group was significantly higher than that of IMH group (t=2.45, P<0.05). The pH value of DR group and IMH group increased significantly in a short time after vitreous body was exposed to room temperature and air in vitro, and gradually increased over time.

Conclusions

Vitreous bodies of DR patients and IMH patients were weakly alkaline. Among them, the vitreous pH value of DR patients was higher than that of IMH patients. After vitreous body was isolated, the pH value of all patients increased with the prolongation of exposure to air and room temperature for a certain period of time.

表1 糖尿病视网膜病变组与特发性黄斑裂孔组患者一般资料的比较
图1 糖尿病视网膜病变组和特发性黄斑裂孔组患者玻璃体酸碱度的比较 糖尿病视网膜病变组患者玻璃体酸碱度明显高于特发性黄斑裂孔组患者玻璃体
图2 离体玻璃体酸碱度随时间变化规律 特发性黄斑裂孔组与糖尿病视网膜病变组均随时间延长均呈明显上升趋势,暴露初期上升速度较快
[1]
Hendrick AM, Gibson MV, Kulshreshtha A. Diabetic Retinopathy[J]. Prim Care, 2015, 42(3): 451-464.
[2]
Hammer M, Schweitzer D, Richter S, et al. Sodium fluorescein as a retinal pH indicator?[J]. Physiol Meas, 2005, 26(4): N9-N12.
[3]
Yamamoto F, Borgula GA, Steinberg RH. Effects of light and darkness on pH outside rod photoreceptors in the cat retina[J]. Exp Eye Res, 1992, 54(5): 685-697.
[4]
中华医学会眼科学会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2014年)[J]. 中华眼科杂志201450(11):851-865.
[5]
Ogurtsova K, Da RFJ, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040[J]. Diabetes Res Clin Pract, 2017, 128: 40-50.
[6]
Ibanez-Bruron MC, Solebo AL, Cumberland PM, et al. Prevalence of diabetic retinopathy in children and young people living with diabetes: protocol for a systematic review[J]. BMJ Open, 2017, 7(11): e18578.
[7]
Zhang G, Chen H, Chen W, et al. Prevalence and risk factors for diabetic retinopathy in China: a multi-hospital-based cross-sectional study[J]. Br J Ophthalmol, 2017, 101(12): 1591-1595.
[8]
Sabanayagam C, Yip W, Ting DS, et al. Ten Emerging Trends in the Epidemiology of Diabetic Retinopathy[J]. Ophthalmic Epidemiol, 2016, 23(4): 209-222.
[9]
Flaxman SR, Bourne R, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis[J]. Lancet Glob Health, 2017, 5(12): e1221-e1234.
[10]
Chan JC, Zhang Y, Ning G. Diabetes in China: a societal solution for a personal challenge[J]. Lancet Diabetes Endocrinol, 2014, 2(12): 969-979.
[11]
Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310(9): 948-959.
[12]
James M, Turner DA, Broadbent DM, et al. Cost effectiveness analysis of screening for sight threatening diabetic eye disease[J]. BMJ, 2000, 320(7250): 1627-1631.
[13]
Larsen MB, Henriksen JE, Grauslund J, et al. Prevalence and risk factors for diabetic retinopathy in 17 152 patients from the island of Funen, Denmark[J]. Acta Ophthalmol, 2017, 95(8): 778-786.
[14]
Vujosevic S, Midena E. Diabetic retinopathy in Italy: Epidemiology data and telemedicine screening programs[J]. J Diabetes Res, 2016, 2016: 3627465.
[15]
Ponto KA, Koenig J, Peto T, et al. Prevalence of diabetic retinopathy in screening-detected diabetes mellitus: results from the gutenberg Health Study (GHS)[J]. Diabetologia, 2016, 59(9): 1913-1919.
[16]
Thomas RL, Dunstan FD, Luzio SD, et al. Prevalence of diabetic retinopathy within a national diabetic retinopathy screening service[J]. Br J Ophthalmol, 2015, 99(1): 64-68.
[17]
Willis JR, Doan QV, Gleeson M, et al. Vision-related functional burden of diabetic retinopathy across severity levels in the united states[J]. JAMA Ophthalmol, 2017, 135(9): 926-932.
[18]
Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35(3): 556-564.
[19]
Liu L, Wu X, Liu L, et al. Prevalence of diabetic retinopathy in mainland China: a meta-analysis[J]. PLoS One, 2012, 7(9): e45264.
[20]
Jenkins AJ, Joglekar MV, Hardikar AA, et al. Biomarkers in diabetic retinopathy[J]. Rev Diabet Stud, 2015, 12(1-2): 159-195.
[21]
Calderon GD, Juarez OH, Hernandez GE, et al. Oxidative stress and diabetic retinopathy: development and treatment[J]. Eye (Lond), 2017, 31(8): 1122-1130.
[22]
Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient[J]. Exp Diabetes Res, 2007, 2007: 61038.
[23]
Ng ZX, Kuppusamy UR, Iqbal T, et al. Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with pro-inflammatory, oxidative-glycation markers and sRAGE in diabetic retinopathy[J]. Gene, 2013, 521(2): 227-233.
[24]
Galvez MI. Protein kinase C inhibitors in the treatment of diabetic retinopathy(Review)[J]. Curr Pharm Biotechnol, 2011, 12(3): 386-391.
[25]
Mesquita J, Castro-de-Sousa JP, Vaz-Pereira S, et al. Evaluation of the growth factors VEGF-a and VEGF-β in the vitreous and serum of patients with macular and retinal vascular diseases[J]. Growth Factors, 2018, 36(1-2): 48-57.
[26]
Chen H, Zhang X, Liao N, et al. Assessment of biomarkers using multiplex assays in aqueous humor of patients with diabetic retinopathy[J]. BMC Ophthalmol, 2017, 17(1): 176.
[27]
Feng S, Yu H, Yu Y, et al. Levels of Inflammatory Cytokines IL-1beta, IL-6, IL-8, IL-17A, and TNF-alpha in aqueous humour of patients with diabetic retinopathy[J]. J Diabetes Res, 2018, 2018: 8546423.
[28]
Abu EA, Struyf S, Kangave D, et al. Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy[J]. Eur Cytokine Netw, 2006, 17(3): 155-165.
[29]
Ogata N, Matsuoka M, Matsuyama K, et al. Plasma concentration of pigment epithelium-derived factor in patients with diabetic retinopathy[J]. J ClinEndocrinol Metab, 2007, 92(3): 1176-1179.
[30]
Al KE, Xu Z, Al RS, et al. Vitreous levels of placental growth factor correlate with activity of proliferative diabetic retinopathy and are not influenced by bevacizumab treatment[J]. Eye (Lond), 2017, 31(4): 529-536.
[31]
Burgos R, Mateo C, Canton A, et al. Vitreous levels of IGF-I, IGF binding protein 1, and IGF binding protein 3 in proliferative diabetic retinopathy: a case-control study[J]. Diabetes Care, 2000, 23(1): 80-83.
[32]
Dmitriev AV, Henderson D, Linsenmeier RA. Development of diabetes-induced acidosis in the rat retina[J]. Exp Eye Res, 2016, 149: 16-25.
[33]
Budzynski E, Wangsa-Wirawan N, Padnick-Silver L, et al. Intraretinal pH in diabetic cats[J]. Curr Eye Res, 2005, 30(3): 229-240.
[34]
Padnick-Silver L, Linsenmeier RA. Effect of hypoxemia and hyperglycemia on pH in the intact cat retina[J]. Arch Ophthalmol, 2005, 123(12): 1684-1690.
[35]
Dreffs A, Henderson D, Dmitriev AV, et al. Retinal pH and Acid Regulation During Metabolic Acidosis[J]. Curr Eye Res, 2018, 43(7): 902-912.
[36]
Tsacopoulos M, Levy S. Intraretinal acid-base studies using pH glass microelectrodes: effect of respiratory and metabolic acidosis and alkalosis on inner-retinal pH[J]. Exp Eye Res, 1976, 23(5): 495-504.
[37]
Miyake T, Nishiwaki A, Yasukawa T, et al. Possible implications of acid-sensing ion channels in ischemia-induced retinal injury in rats[J]. Jpn J Ophthalmol, 2013, 57(1): 120-125.
[38]
Yang Z, Alvarez BV, Chakarova C, et al. Mutant carbonic anhydrase 4 impairs pH regulation and causes retinal photoreceptor degeneration[J]. Hum Mol Genet, 2005, 14(2): 255-265.
[39]
Tan J, Xu YP, Liu GP, et al. Involvement of acid-sensing ion channel 1a in functions of cultured human retinal pigment epithelial cells[J]. J Hua zhong Univ Sci Technolog Med Sci, 2013, 33(1): 137-141.
[40]
Andersen MV. Changes in the vitreous body pH of pigs after retinal xenon photocoagulation[J]. Acta Ophthalmol (Copenh), 1991, 69(2): 193-199.
[41]
Davson H, Luck CP. A comparative study of the total carbon dioxide in the ocular fluids, cerebrospinal fluid, and plasma of some mammalian species[J]. J Physiol, 1956, 132(2): 454-464.
[42]
Wenzel A, Grimm C, Samardzija M, et al. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration[J]. Prog Retin Eye Res, 2005, 24(2): 275-306.
[43]
Lu DW, Chang CJ, Wu JN. The changes of vitreous pH values in an acute glaucoma rabbit model[J]. J Ocul Pharmacol Ther, 2001, 17(4): 343-350.
[44]
Holekamp NM. The vitreous gel: more than meets the eye[J]. Am J Ophthalmol, 2010, 149(1): 32-36.
[45]
Locci E, Scano P, Rosa MF, et al. A metabolomic approach to animal vitreous humor topographical composition: a pilot study[J]. PLoS One, 2014, 9(5): e97773.
[46]
Yamamoto F, Steinberg RH. Effects of intravenous acetazolamide on retinal pH in the cat[J]. Exp Eye Res, 1992, 54(5): 711-718.
[47]
Murray DL, Feke GT, Weiter JJ. Preretinal pH changes in the rabbit under conditions of light and dark[J]. Exp Eye Res, 1991, 53(6): 717-722.
[48]
Lorget F, Parenteau A, Carrier M, et al. Characterization of the pH and temperature in the rabbit, pig, and monkey eye: Key parameters for the development of long-acting delivery ocular strategies[J]. Mol Pharm, 2016, 13(9): 2891-2896.
[49]
Landers MR, Watson JS, Ulrich JN, et al. Determination of retinal and vitreous temperature in vitrectomy[J]. Retina, 2012, 32(1): 172-176.
[50]
Rossi M, Di Censo F, Di Censo M, et al. Changes in aqueous humor pH after femtosecond laser-assisted cataract surgery[J]. J Refract Surg, 2015, 31(7): 462-465.
[51]
Veselovsky J, Olah Z, Vesela A, et al. The pH reaction in aqueous humor to antiglaucoma agents of various concentrations and pH levels[J]. CeskSlov Oftalmol, 2001, 57(5): 291-297.
[52]
Gao BB, Clermont A, Rook S, et al. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation[J]. Nat Med, 2007, 13(2): 181-188.
[53]
Abhary S, Burdon KP, Gupta A, et al. Diabetic retinopathy is not associated with carbonic anhydrase gene polymorphisms[J]. Mol Vis, 2009, 15: 1179-1184.
[54]
Shah CP, Garg SJ, Vander JF, et al. Outcomes and risk factors associated with endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents[J]. Ophthalmology, 2011, 118(10): 2028-2034.
[55]
Thrimawithana TR, Young S, Bunt CR, et al. Drug delivery to the posterior segment of the eye[J]. Drug Discov Today, 2011, 16(5-6): 270-277.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 罗红, 袁昌亮, 陈岚. MiR-3202对高糖诱导的人视网膜血管内皮细胞损伤的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(03): 155-160.
[3] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[4] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[5] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[6] 李茹月, 李明华, 张凯文, 张悦, 牟大鹏, 王宁利, 刘含若. 早期筛查老年人群糖尿病视网膜病变的卫生经济学分析[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 216-221.
[7] 陈昱凝, 沈畅, 李洋, 魏文斌. 特发性黄斑裂孔发病机制、诊断及治疗的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(04): 234-241.
[8] 李茹月, 刘含若. 卫生经济学评价常见致盲眼病筛查的进展[J]. 中华眼科医学杂志(电子版), 2021, 11(02): 94-98.
[9] 张骏, 刘志南, 邹茜, 孙倬, 王浩, 王惠云, 邓国华. 玻璃体切割联合消毒空气填充术治疗特发性黄斑裂孔疗效的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 29-34.
[10] 丁云鹤, 严棽棽, 王璐, 陈燕云, 宋婷婷, 张璐, 李哲清, 杨智, 田蓓. 增殖性糖尿病视网膜病变虹膜新生血管的多模态临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 8-13.
[11] 霍剑, 段俊国, 朱柯宇, 艾家玲, 隋嘉庆. 芪明颗粒对非增生期糖尿病视网膜病变患者视网膜微循环状态影响的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(06): 333-338.
[12] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
[13] 冉启玉, 杜鹏宇, 孔蕾, 孙冰. 神经酰胺与糖尿病及其并发症关系研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 158-162.
[14] 杨莲, 罗争, 龚娇. 合并阻塞性睡眠呼吸暂停低通气综合征对老年人2型糖尿病视网膜病变的影响[J]. 中华老年病研究电子杂志, 2022, 09(03): 33-36.
[15] 李伟, 王青. 延续性护理干预对老年2型糖尿病视网膜病变患者血糖和视力水平的控制效果[J]. 中华老年病研究电子杂志, 2021, 08(03): 48-51.
阅读次数
全文


摘要