切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (04) : 216 -221. doi: 10.3877/cma.j.issn.2095-2007.2022.04.005

眼科管理

早期筛查老年人群糖尿病视网膜病变的卫生经济学分析
李茹月1, 李明华2, 张凯文1, 张悦1, 牟大鹏1, 王宁利1, 刘含若1,()   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 眼科学与视觉科学北京市重点实验室
    2. 256300 山东省淄博市高青县疾病预防控制中心
  • 收稿日期:2022-01-27 出版日期:2022-08-28
  • 通信作者: 刘含若
  • 基金资助:
    北京市科技新星项目(Z191100001119072)

Health economic analysis of early screening for diabetic retinopathy in the elderly

Ruyue Li1, Minghua Li2, Kaiwen Zhang1, Yue Zhang1, Dapeng Mou1, Ningli Wang1, Hanruo Liu1,()   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
    2. Center for Disease Control and Prevention of Gaoqing County, Zibo 256300, China
  • Received:2022-01-27 Published:2022-08-28
  • Corresponding author: Hanruo Liu
引用本文:

李茹月, 李明华, 张凯文, 张悦, 牟大鹏, 王宁利, 刘含若. 早期筛查老年人群糖尿病视网膜病变的卫生经济学分析[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(04): 216-221.

Ruyue Li, Minghua Li, Kaiwen Zhang, Yue Zhang, Dapeng Mou, Ningli Wang, Hanruo Liu. Health economic analysis of early screening for diabetic retinopathy in the elderly[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(04): 216-221.

目的

从社会角度和卫生系统角度探讨中国50岁以上人群行糖尿病视网膜病变(DR)筛查的经济学效益。

方法

检索中国知网、万方数据库、PubMed及Medline等数据库,检索日期为自建库之始至2020年12月,搜集中国50岁以上人群DR的患病率、转归率、筛查依从性、治疗依从性、筛查敏感性、筛查特异性、DR不同分期的效用值及死亡率等指标。按照国际分级系统将DR分为不威胁视力DR、威胁视力DR,糖尿病性黄斑水肿及DR致盲等4个阶段。筛查项目、转诊检查及治疗费用来源于邯郸眼病研究和2020年首都医科大学附属北京同仁医院住院系统。使用TreeAge Pro软件构建DR筛查的马尔可夫模型,以社区筛查、远程筛查及人工智能(AI)辅助筛查为研究策略,以无筛查为对照策略,以我国农村和城市50岁以上人群为队列人群,比较不同策略的成本效益,并比较1~5年筛查间隔的成本效益。2020年中国农村和城市人均生产总值(GDP)分别为49 000元和84 000元。经济学效益以增量成本-效用比(ICUR)和增量成本-效果比(ICER)表示。成本效益阈值按照世界卫生组织规定的ICER或ICUR<3倍人均GDP为具有成本效益,<1倍人均GDP为具有高成本效益,>3倍人均GDP则不具备经济性。通过敏感性分析评价模型的稳健性。

结果

农村和城市人群的成本效益阈值分别为147 000元和252 000元。从社会角度看,对农村50岁以上人群进行社区、远程及AI辅助筛查的ICUR分别为4214元、2772元及3206元;每避免1个致盲年导致的ICER分别为216 524元、152 726元及164 745元;对城市人群筛查的ICUR分别为7133元、5061元及5894元;每避免1个致盲年导致的ICER分别为57 792元、37 632元及55 839元。与无筛查人群相比,农村和城市的ICUR以及城市人群的ICER均<1倍人均GDP;3种筛查方式对农村50岁以上人群的ICER均略高于成本效益阈值。从卫生系统角度看,3种筛查方式对农村和城市老年人群的ICUR和ICER均低于成本效益阈值。社区或AI辅助筛查对城市老年人群间隔2年以上具有成本效益,远程筛查间隔1年以上已具有成本效益;而对农村人群各筛查间隔均不具有成本效益。经概率敏感性分析,当成本效益阈值为3倍人均GDP时,农村老年人群社区、远程及AI辅助筛查成本效益概率分别为87.34%、87.56%及87.54%;城市老年人群筛查的成本效益概率分别为89.19%、89.48%及89.61%。当成本效益阈值为1倍人均GDP时,3种筛查方式对农村老年人群筛查有成本效益的概率分别为86.03%、86.84%及86.55%;城市老年人群的成本效益概率分别为87.83%、88.55%及88.62%。说明构建马尔可夫模型的设计和结果稳健,对参数的浮动不敏感。

结论

对我国50岁以上老年人群进行DR筛查具有成本效益,因农村和城市的经济发展水平和疾病负担不同,应制定适宜当地的DR筛查模式。

Objective

To explore the cost-effectiveness of screening for diabetic retinopathy (DR) among people over 50 years old in China from social and health system perspectives.

Methods

CNKI, Wanfang Database, PubMed and Medline from the beginning of self-built database to December 2020 were searched, and parameters such as prevalence, transition rate, screening and treatment compliance, screening sensitivity and specificity, utility value and mortality rate of DR among people over 50 years old in China were collected. According to the international classification system, DR was be divided into four stages: non-sight-threatening DR, sight-threatening DR, diabetic macular edema and blindness caused by DR. The cost of screening program, referral examination and treatment was based on the Handan Eye Study and inpatients system of Beijing Tongren Hospital affiliated with Capital Medical University in 2020. TreeAgePro software was used to build a Markov model of DR screening, in which the research strategies were community screening, telescreening and artificial intelligence (AI)-based screening, the control strategy was no-screening, and the cohort population were people over 50 years old in rural and urban areas of China. The cost-effectiveness of different strategies was compared, and the cost-effectiveness of 1 to 5 years screening interval was compared. In 2020, China′s rural and urban per capita GDP was ¥49 000 and ¥84 000, respectively. Economic benefits were expressed in terms of incremental cost-effectiveness ratio (ICUR) and incremental cost-effectiveness ratio (ICER). The WHO defined interventions that cost between one to three times the per capita gross domestic product (GDP) was defined as cost-effective, and interventions that cost less than the per capita GDP as highly cost-effective, and interventions that cost more than three times the per capita GDP as not cost-effective. The sensitivity analysis was used to evaluate the robustness of the model.

Results

From the societal perspective, the ICUR of community, telemedicine and AI-based screening for people over 50 years old for rural elderly were ¥4217, ¥2772 and ¥3206, respectively. The ICER was ¥216 524, ¥152 726 and ¥164 745, respectively. The ICUR for urban elderly was ¥7133, ¥5061 and ¥5894, respectively. The ICER was ¥57 792, ¥37 632 and ¥55 839, respectively. Com-pared with elderly without screening , ICUR for rural and urban elderly and ICER for urban elderly were less than the per capita GDP. However, the ICER of 3 screening methods for over 50 years rural elderly was slightly higher than the cost-effectiveness threshold. From health system perspective, ICUR and ICER of 3 screening methods for rural and urban elderly were lower than the cost-effectiveness threshold. Community and AI-assisted screening were cost-effective for urban elderly at intervals of more than 2 years, while telescreening at intervals of more than 1 year was cost-effective; however, it was not cost-effective to screen rural residents frequently. The sensitivity analysis showed that when the cost-effectiveness threshold was 3 times per capita GDP, the cost-effectiveness probabilities of community, telemedicine and AI-assisted screening for rural population were 87.34%, 87.56% and 87.54%, and the probability of urban population 89.19%, 89.48% and 89.61%, respectively. When the cost-effectiveness threshold was 1 time per capita GDP, the cost-effectiveness probability of 3 screening methods for rural eldly was 86.03%, 86.84% and 86.55%, and the cost-effectiveness probability of urban elderly population 87.83%, 88.55% and 88.62%, respectively. It showed that the design and results of Markov model were robust and insensitive to the fluctuation of parameters.

Conclusions

DR screening for the elderly over 50 years old in China is cost-effective. Due to the different levels of economic development and disease burdens in rural and urban areas, appropriate DR screening models should be developed according to local conditions.

表1 马尔可夫模型中所用的参数
参数名称 农村 城市
数值 来源文献 数值 来源文献
患病率(%)        
  非STDR 0.56 [10] 2.92 [11]
  STDR 0.22 [10] 0.98 [11]
  DME 0.34 [10] 0.86 [11]
  DR致盲 0.05 [12] 0.05 [12]
依从性(%)        
  社区筛查 90.7 [1013] 82.5 [14]
  远程筛查 95.0 [15] 96.8 [1014]
  AI辅助筛查 95.0 [15] 96.8 [1014]
  全面医院检查 19.0 [6] 57.0 [6]
  治疗 50.0 [16] 60.0 [17]
  机会性筛查 18.9 [18] 45.1 [18]
社区筛查敏感性(%)        
  非STDR 76 [5] 76 [5]
  STDR 95 [5] 95 [5]
  DME 82 [19] 82 [19]
远程筛查敏感性(%)        
  非STDR 91 [20] 91 [20]
  STDR 91 [20] 91 [20]
  DME 59 [19] 59 [19]
AI辅助筛查敏感性(%)        
  非STDR 91 [5202122] 91 [5202122]
  STDR 100 [5202122] 100 [5202122]
  DME 59 [5202122] 59 [5202122]
特异性(%)        
  社区筛查 100 [5202122] 100 [5202122]
  远程筛查 97 [5202122] 97 [5202122]
  AI辅助筛查 91 [5202122] 91 [5202122]
效用值(%)        
  正常 1.00 [6] 1.00 [6]
  非STDR 0.87 [5616] 0.87 [5616]
  STDR 0.70 [5616] 0.70 [5616]
  DME 0.83 [5616] 0.83 [5616]
  DR致盲 0.26 [5616] 0.26 [5616]
死亡率(%)        
  50~54岁 0.364 [22] 0.364 [22]
  55~59岁 0.518 [22] 0.518 [22]
  60~64岁 0.854 [22] 0.854 [22]
  65~69岁 1.421 [22] 1.421 [22]
  70~74岁 3.149 [22] 3.149 [22]
  75~79岁 4.861 [22] 4.861 [22]
  80~84岁 8.932 [22] 8.932 [22]
表2 马尔可夫模型中所用的成本(元)
表3 糖尿病视网膜病变筛查项目成本效用分析和成本效益分析的结果
[1]
李筱荣,杨千惠. 美国眼科学会糖尿病视网膜病变临床指南解读[J]. 中华实验眼科杂志202038(9):795-798.
[2]
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 国际内分泌代谢杂志202141(5):482-548.
[3]
Harding S, Greenwood R, Aldington S, et al. Grading and disease management in national screening for diabetic retinopathy in England and Wales[J]. Diabet Med, 2003, 20: 965-971.
[4]
UK National Screening Committee. Essential elements in devel-oping a diabetic retinopathy screening programme. National Screening Programme for Diabetic Retinopathy[M]. England: National Health Service, 2009.
[5]
Wu B, Li J, Wu HX. Strategies to screen for diabetic retinopathy in chinese patients with newly diagnosed type 2 diabetes: a cost-effectiveness analysis[J]. Medicine, 2015, 94: e1989.
[6]
Tang JJ, Liang YB, O′Neill C, et al. Cost-effectiveness and cost-utility of population-based glaucoma screening in China: a decision-analytic Markov model[J]. Lancet Glob Health, 2019, 7: e968-e978.
[7]
Liang YB, Friedman DS, Wong TY, et al. Rationale, design, methodology, and baseline data of a population-based study in rural China: the Handan Eye Study[J]. Ophthalmic Epidemiol, 2009, 16(2): 115-127.
[8]
Tah V, Orlans HO, Hyer J, et al. Anti-VEGF therapy and the retina: an update[J]. J Ophthalmol, 2015: 627674.
[9]
Wong TY, Sun J, Kawasaki R, et al. Guidelines on diabetic eye care: the international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings[J]. Ophthalmology, 2018, 125: 1608-1622.
[10]
Jin GM, Xiao W, Ding XH, et al. Prevalence of and risk factors for diabetic retinopathy in a rural Chinese population: the Yangxi eye study[J]. Invest Ophthalmol Vis Sci, 2018, 59(12): 5067-5073.
[11]
Xu TL, Wang BS, Liu H, et al. Prevalence and causes of vision loss in China from 1990 to 2019: findings from the Global Burden of Disease Study 2019[J] .Lancet Public Health, 2020, 5: e682-e691.
[12]
Lian JX, Gangwani RA, McGhee SM, et al. Systematic screening for diabetic retinopathy (DR) in Hong Kong: prevalence of DR and visual impairment among diabetic population[J]. Br J Ophthalmol, 2016, 100(2): 151-155.
[13]
Jin G, Ding X, Xiao W, et al. Prevalence of age-related macular degeneration in rural southern China: the Yangxi Eye Study[J]. Br J Ophthalmol, 2018, 102(5): 625-630.
[14]
Ye HH, Zhang Q, Liu XH, et al. Prevalence of age-related macular degeneration in an elderly urban Chinese population in China: the Jiangning Eye Study[J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6374-6380.
[15]
Li R, Yang Z, Zhang Y, et al. Cost-effectiveness and cost-utility of traditional and telemedicine combined population-based age-related macular degeneration and diabetic retinopathy screening in rural and urban China[J]. Lancet Reg Health West Pac, 2022, 23: e100435.
[16]
Rachapelle S, Legood R, Alavi Y, et al. The cost-utility of telemedicine to screen for diabetic retinopathy in India[J]. Ophthalmology, 2013, 120(3): 566-573.
[17]
Chan CK, Gangwani RA, McGhee SM, et al. Cost-effectiveness of screening for intermediate age-related macular degeneration during diabetic retinopathy screening[J]. Ophthalmology, 2015122(11): 2278-2785.
[18]
Wang DD, Ding XH, He MG, et al. Use of eye care services among diabetic patients in urban and rural China[J]. Ophthalmology, 2010, 117(9): 1755-1762.
[19]
Ullah W, Pathan SK, Panchal A, et al. Cost-effectiveness and diagnostic accuracy of telemedicine in macular disease and diabetic retinopathy: A systematic review and meta-analysis[J]. Medicine (Baltimore), 2020, 99(25): e20306.
[20]
Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223.
[21]
Bawankar P, Shanbhag N, Smitha KS, et al. Sensitivity and specificity of automated analysis of single-field non-mydriatic fundus photographs by Bosch DR Algorithm-comparison with mydriatic fundus photography (ETDRS) for screening in undiagnosed diabetic retinopathy[J]. PLoS One, 2017, 12(12): e0189854.
[22]
Zhang W, Wei M. The evaluation of the mortality and life expectancy of Chinese population[J]. Popul J, 2016, 38: 18-28.
[23]
李茹月,刘含若. 卫生经济学评价常见致盲眼病筛查的进展[J/CD]. 中华眼科医学杂志(电子版)202111(2):94-98.
[24]
Kirkizlar E, Serban N, Sisson JA, et al. Evaluation of telemedicine for screening of diabetic retinopathy in the Veterans Health Administration[J]. Ophthalmology, 2013, 120: 2604-2610.
[25]
Tung TH, Shih HC, Chen SJ, et al. Economic evaluation of screening for diabetic retinopathy among Chinese type 2 diabetics: a community-based study in Kinmen, Taiwan[J]. Epidemiology, 2008, 18(5): 225-233.
[26]
彭金娟,邹海东,王伟伟,等. 上海市北新泾糖尿病视网膜病变社区远程筛查与传统筛查系统的成本比较[J]. 中华健康管理学杂志20104(5):297-298.
[27]
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410.
[28]
Li ZX, Keel S, Liu C, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs[J]. Diabetes Care, 201841(12): 2509-2516.
[29]
Raumviboonsuk P, Krause J, Chotcomwongse P, et al. Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program[J]. NPJ Digit Med, 2019, 2: e25.
[30]
王亚星,薛灿灿,李建军.眼科人工智能研究存在的主要问题及对策[J]. 眼科202130(2):81-84.
[1] 顾莉莉, 姜凡. 安徽省超声产前筛查切面图像质量现状调查情况及分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 671-674.
[2] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[3] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[4] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[5] 钱警语, 郑明明. 《2024意大利妇产科学会非侵入性和侵入性产前诊断指南》解读[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 486-492.
[6] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[11] 苏博兴, 肖博, 李建兴. 2024年美国泌尿外科学会年会结石领域手术治疗相关热点研究及解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 303-308.
[12] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[13] 王洪, 王骏华, 范建楠. 人工智能技术在肩袖损伤中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 356-361.
[14] 罗桂彬, 沈强, 张蓝月, 刘涵. 晚期糖化终末产物与糖尿病视网膜病变相关性的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 247-251.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要