切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 38 -44. doi: 10.3877/cma.j.issn.2095-2007.2019.01.006

论著

应用三维磁共振成像技术探究病理性近视眼眼底病变与眼球形态的关系
刘向红1, 张月玲2,(), 杨娜2, 王莉菲3, 张建军4   
  1. 1. 067000 承德医学院研究生院2016级研究生
    2. 071000 保定市第一中心医院东院眼二科
    3. 054000 邢台 河北省眼科医院眼底外科
    4. 071000 保定市第一中心医院医学影像科
  • 收稿日期:2018-12-29 出版日期:2019-02-28
  • 通信作者: 张月玲
  • 基金资助:
    河北省科技计划项目(152777102D)

Using 3D-MRI to study the relationship between pathological myopia fundus lesion and ocular shape

Xianghong Liu1, Yueling Zhang2,(), Na Yang2, Lifei Wang3, Jianjun Zhang4   

  1. 1. Grade 2016, Graduate School of Chengde Medical University, Chengde 067000, China
    2. Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding 071000, China
    3. Department of Fundus Surgery, Hebei Eye Hospital, Xingtai 054000, China
    4. Department of Medical Imaging, Baoding No.1 Central Hospital, Baoding 071000, China
  • Received:2018-12-29 Published:2019-02-28
  • Corresponding author: Yueling Zhang
引用本文:

刘向红, 张月玲, 杨娜, 王莉菲, 张建军. 应用三维磁共振成像技术探究病理性近视眼眼底病变与眼球形态的关系[J]. 中华眼科医学杂志(电子版), 2019, 09(01): 38-44.

Xianghong Liu, Yueling Zhang, Na Yang, Lifei Wang, Jianjun Zhang. Using 3D-MRI to study the relationship between pathological myopia fundus lesion and ocular shape[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(01): 38-44.

目的

探究病理性近视眼眼球形态在三维磁共振成像中的分型,不同类型的病理性近视眼眼底病变中各眼球形态分布,以及眼球形态与年龄、眼轴长度、屈光度及眼底病变类型的关系。

方法

本研究为观察性研究,将病理性近视患者58例(104只眼)按年龄分为<60岁组和≥60岁组;按眼轴长度分为<29 mm组和≥29 mm组;按屈光度分为-6.00~-12.00 D组、-12.25~-18.00 D组及≥-18.25 D组;按眼底病变分为脉络膜新生血管组、黄斑劈裂组、黄斑裂孔性视网膜脱离组及单纯脉络膜视网膜萎缩组。所有患者均接受屈光度、散瞳检查眼底、眼底照相、光学相干断层扫描血管成像及磁共振眼眶扫描检查。观察各组别中不同眼球形态的发生率及差异。

结果

根据临床经验和三维磁共振成像结果,将病理性近视眼球形态分为椭圆形10例(14只眼)、锥形22例(26只眼)、扭曲形24例(36只眼)、桶形20例(28只眼)。在病理性近视眼脉络膜新生血管患者10例(10只眼)中,锥形和扭曲形各4例(4只眼),占40.0%(4/10);椭圆形2例(2只眼),占20.0%(2/10)。黄斑劈裂患者8例(8只眼)中,扭曲形4例(4只眼),占50.0%(4/8);桶形4例(4只眼),占50.0%(4/8)。黄斑裂孔性视网膜脱离患者6例(6只眼)中,桶形4例(4只眼),占66.7%(4/6);扭曲形2例(2只眼),占33.3%(2/6)。单纯脉络膜视网膜萎缩患者54例(80只眼)中,扭曲形18例(26只眼),占32.5%(26/80);锥形18例(22只眼),占27.5%(22/80);桶形10例(20只眼),占25.0%(20/80);椭圆形8例(12只眼),占15.0%(12/80)。4种眼球类型的分布差异在不同年龄组、不同眼轴组及不同屈光度组中均有统计学意义(χ2=10.43,44.13,48.93;P<0.05),在不同病理性近视眼眼底病变组中无统计学意义(χ2=15.59,P>0.05)。

结论

三维磁共振成像技术能全面直观地反映眼球的具体形态,病理性近视眼眼球形态与年龄、眼轴长度及屈光度相关,病理性近视眼脉络膜新生血管、黄斑劈裂及单纯脉络膜视网膜萎缩的眼球形态偏向于扭曲形和锥形,而黄斑裂孔性视网膜脱离偏向于桶形。

Objective

The aim of this study was to implore the classification of pathological myopia ocular shape in 3 dimensions magnetic resonance imaging (3D-MRI), the incidence rate of ocular morphology classification in different pathological myopia fundus lesion, and the relationship between ocular shape and age, axis oculi length, diopter, and fundus lesion types.

Methods

This observational study was divided 58 pathological myopia patients (104 eyes) into groups by age (<60 years and ≥60 years), axis oculi length (<29 mm and ≥29 mm), diopter (-6.00 to -12.00 D, -12.25 to -18.00 D, and ≥ -18.25 D), and fundus lesions (pathological myopia choroidal neovascularization, foveoschisis, macular hole retinal detachment, and chorioretinal atrophy). All the patients were examined for diopter, dilated pupil for fundus examination, fundus photography, optical coherence tomography angiography, magnetic resonance orbital scanning. The incidence rate of various ocular shape and compare the differences between different age groups, axis oculi length groups, diopter groups, and fundus lesion groups was observed.

Results

Pathological myopia ocular shape was divided into ellipsoidal shape (10 cases, 14 eyes), conical shape (22 cases, 26 eyes), distorted shape (24 cases, 36 eyes), and barrel shape (20 cases, 28 eyes) according to clinical experiences and 3D-MRI results. Ten cases (10 eyes) for pathological myopia choroidal neovascularization contained 4 cases (4 eyes, accounting for 40.0% of the 10 eyes) for conical shape and distorted shape, respectively, and 2 cases (2 eyes, 20.0%) for ellipsoidal shape. Eight cases (8 eyes) for pathological myopia foveoschisis contained 4 cases (4 eyes, accounting for 50.0% of the 8 eyes) for distorted shape, and 4 cases (4 eyes, 50.0%) for barrel shape. Six cases (6 eyes) for pathological myopia macular hole retinal detachment contained 4 cases (4 eyes, 66.7%) for barrel shape, and 2 cases (2 eyes, 33.3%) for distorted shape. Fifty-four cases (80 eyes) for pathological myopia chorioretinal atrophy contained 18 cases (26 eyes, 32.5%) for distorted shape, 18 cases (22 eyes, 27.5%) for conical shape, 10 cases (20 eyes, 25.0%) for barrel shape, and 8 cases (12 eyes, 15.0%) for ellipsoidal shape. The distribution of the four types ocular shape had statistical significance between different age groups, axis oculi length groups, and diopter groups (χ2=10.43, 44.13, 48.93; P<0.05), but no in fundus lesion groups (χ2=15.59, P>0.05).

Conclusion

3D-MRI can directly and comprehensively show ocular shape. Pathological myopia ocular shape is related to age, axis oculi length, and diopter. Ocular shape of pathological myopia choroidal neovascularization, foveoschisis, chorioretinal atrophy tend to distorted shape and conical shape, while macular hole retinal detachment did to barrel shape.

图1 三维磁共振成像眼球形态分型 A图为椭圆形,眼球沿矢状位延长,鼻部和颞部对称,曲率无明显突然的变化,后面观可见一微微隆起的尖端。B图为锥形,眼球沿矢状位延长,后极部可见鼻部和颞侧部突然对称的凹陷,后面观可见后部中央一钝圆的隆起,视神经处未见隆起。C图为扭曲形,眼球沿矢状位延长,颞侧可见一明显突然凹陷,鼻部曲率光滑,无明显凹陷,后面观可见一微微隆起的尖端;后部颞侧钝圆突起,未包裹视神经,此为颞侧扭曲型,鼻侧扭曲型的突起为偏向鼻侧。D图为桶形,眼球沿矢状位延长,呈长条圆桶状,鼻侧和颞侧曲率半径大致相等,对称突出,后面观可见大面积较平的突起
表1 不同年龄组4种眼球类型分布的情况[眼数(%)]
表2 不同眼轴长度组4种眼球类型分布的情况[眼数(%)]
表3 不同屈光度组4种眼球类型分布的情况[眼数(%)]
图2 不同类型的病理性近视眼眼底病变与其相对应的光学相干断层扫描血管成像图像及眼球形态 A图示单纯病理性近视眼脉络膜视网膜萎缩;B图示病理性近视眼脉络膜新生血管;C图示病理性近视眼黄斑劈裂;D图示病理性近视眼黄斑裂孔性视网膜脱离
表4 不同病理性近视眼眼底病变组4种眼球类型分布的情况[眼数(%)]
[1]
Vitale S, Sperduto RD, Ferris FL. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004[J]. Arch Ophthalmol, 2009, 127(12): 1632-1639.
[2]
He M, Zeng J, Liu Y, et al. Refractive error and visual impairment in urban children in southern China[J]. Invest Ophthalmol Vis Sci, 2004, 45(3): 793-799.
[3]
Vongphanit J, Mitchell P, Wang JJ. Prevalence and progression of myopic retinopathy in an older population[J]. Ophthalmology, 2002, 109(4): 704-711.
[4]
Resnikoff S, Pascolini D, Mariotti SP, et al. Global magnitude of visual impairment caused by uncorrected refractive errors in 2004[J]. Bull World Health Organ, 2008, 86(1): 63-70.
[5]
Moriyama M, Ohno-Matsui K, Hayashi K, et al. Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging[J]. Ophthalmology, 2011, 118(8): 1626-1637.
[6]
Moriyama M, Ohno-Matsui K, Modegi T, et al. Quantitative analyses of high-resolution 3D MRI images of highly myopic eyes to determine their shapes[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 4510-4518.
[7]
Chang L, Pan CW, Ohno-Matsui K, et al. Myopia-related fundus changes in Singapore adults with high myopia[J]. Am J Ophthalmol, 2013, 155(6): 991-999.
[8]
Gao LQ, Liu W, Liang YB, et al. Prevalence and characteristics of myopic retinopathy in a rural Chinese adult population: the Handan Eye Study[J]. Arch Ophthalmol, 2011, 129(9): 1199-1204.
[9]
Chen H, Wen F, Li H, et al. The types and severity of high myopic maculopathy in Chinese patients[J]. Ophthalmic Physiol Opt, 2012, 32(1): 60-67.
[10]
Steidl SM, Pruett RC. Macular complications associated with posterior staphyloma[J]. Am J Ophthalmol, 1997, 123(2): 181-187.
[11]
Hsiang HW, Ohno-Matsui K, Shimada N, et al. Clinical characteristics of posterior staphyloma in eyes with pathologic myopia[J]. Am J Ophthalmol, 2008, 146(1): 102-110.
[12]
Henaine-Berra A, Zand-Hadas IM, Fromow-Guerra J, et al. Prevalence of macular anatomic abnormalities in high myopia[J]. Ophthalmic Surg Lasers Imaging Retina, 2013, 44(2): 140-144.
[13]
Chae JB, Moon BG, Yang SJ, et al. Macular gradient measurement in myopic posterior staphyloma using optical coherence tomography[J]. Korean J Ophthalmol, 2011, 25(4): 243-247.
[14]
Jo Y, Ikuno Y, Nishida K. Retinoschisis: a predictive factor in vitrectomy for macular holes without retinal detachment in highly myopic eyes[J]. Br J Ophthalmol, 2012, 96(2): 197-200.
[15]
施靖容,何玉萍,赵婷婷,等. 应用3D-MRI成像技术重建高度近视眼球形态[J]. 中华眼视光学与视觉科学杂志201618(5):269-274.
[16]
Suda K, Hangai M, Yoshimura N. Axial length and outcomes of macular hole surgery assessed by spectral-domain optical coherence tomography[J]. Am J Ophthalmol, 2011, 151(1): 118-127.
[17]
Spaide RF. Staphyloma: Part 1[M]. New York:Springer, 2013: 167-176.
[18]
Ohno-Matsui K. Proposed classification of posterior staphylomas based on analyses of eye shape by three-dimensional magnetic resonance imaging and wide-field fundus imaging[J]. Ophthalmology, 2014, 121(9): 1798-1809.
[19]
Guo X, Xiao O, Chen Y, et al. Three-dimensional eye shape, myopic maculopathy, and visual acuity: the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Cohort Study[J]. Ophthalmology, 2017, 124(5): 679-687.
[20]
Morgan I, Rose K. How genetic is school myopia?[J]. Prog Retin Eye Res, 2005, 24(1): 1-38.
[21]
Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia[J]. Ophthalmic Physiol Opt, 2012, 32(1): 3-16.
[22]
Morgan IG, Ohno-Matsui K, Saw SM. Myopia[J]. Lancet, 2012, 379(9827): 1739-1748.
[23]
Katz J, Tielsch JM, Sommer A. Prevalence and risk factors for refractive errors in an adult inner city population[J]. Invest Ophthalmol Vis Sci, 1997, 38(2): 334-340.
[24]
Attebo K, Ivers RQ, Mitchell P. Refractive errors in an older population: the Blue Mountains Eye Study[J]. Ophthalmology, 1999, 106(6): 1066-1072.
[25]
Pan CW, Wong TY, Lavanya R, et al. Prevalence and risk factors for refractive errors in Indians: the Singapore Indian Eye Study (SINDI)[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3166-3173.
[26]
Wong TY, Foster PJ, Hee J, et al. Prevalence and risk factors for refractive errors in adult Chinese in Singapore[J]. Invest Ophthalmol Vis Sci, 2000, 41(9): 2486-2494.
[27]
Gilmartin B. Myopia: precedents for research in the twenty-first century[J]. Clin Exp Ophthalmol, 2004, 32(3): 305-324.
[28]
Young TL, Metlapally R, Shay AE. Complex trait genetics of refractive error[J]. Arch Ophthalmol, 2007, 125(1): 38-48.
[29]
Shimada N, Ohno-Matsui K, Nishimuta A, et al. Detection of paravascular lamellar holes and other paravascular abnormalities by optical coherence tomography in eyes with high myopia[J]. Ophthalmology, 2008, 115(4): 708-717.
[30]
Shimada N, Ohno-Matsui K, Nishimuta A, et al. Peripapillary changes detected by optical coherence tomography in eyes with high myopia[J]. Ophthalmology, 2007, 114(11): 2070-2076.
[31]
Sakaguchi H, Ikuno Y, Choi JS, et al. Multiple components of epiretinal tissues detected by triamcinolone and indocyanine green in macular hole and retinal detachment as a result of high myopia[J]. Am J Ophthalmol, 2004, 138(6): 1079-1081.
[32]
Ohno-Matsui K, Yoshida T, Futagami S, et al. Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia[J]. Br J Ophthalmol, 2003, 87(5): 570-573.
[33]
Wakazono T, Yamashiro K, Miyake M, et al. Association between eye shape and myopic traction maculopathy in high myopia[J]. Ophthalmology, 2016, 123(4): 919-921.
[34]
Yu X, Ma W, Liu B, et al. Morphological analysis and quantitative evaluation of myopic maculopathy by three-dimensional magnetic resonance imaging[J]. Eye (Lond), 2018, 32(4): 782-787.
[1] 张宁宁, 慕璟玉, 马晓玲, 李小龙, 王雁, 赵勇. 儿童青少年高度近视眼眼底特征的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 252-256.
[2] 付彩云, 王刚, 郑燕, 张晶, 黄厚斌, 张丽, 王玥, 张秋露, 翟长斌. 广角激光扫描检眼镜筛查近视眼术前眼底病变的临床研究[J]. 中华眼科医学杂志(电子版), 2019, 09(04): 233-239.
[3] 邢凯, 吴宁玲, 亢泽峰, 刘健, 朱明娟. 高度近视眼巩膜细胞外基质中相关胶原分子机制的研究进展[J]. 中华眼科医学杂志(电子版), 2018, 08(01): 44-48.
阅读次数
全文


摘要