切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (01) : 12 -17. doi: 10.3877/cma.j.issn.2095-2007.2023.01.003

论著

小鼠干眼模型构建及其角膜特征检测的实验研究
白静怡, 黄轩, 张益权, 田颖, 陶勇()   
  1. 100020 首都医科大学附属北京朝阳医院眼科2020级硕士研究生;101400 首都医科大学附属北京怀柔医院眼科
    100020 首都医科大学附属北京朝阳医院眼科
  • 收稿日期:2022-04-03 出版日期:2023-02-28
  • 通信作者: 陶勇
  • 基金资助:
    北京市百千万人才工程项目(2020027); 2022年国家自然科学基金青年项目(82101138)

The construction of a mouse dry eye model and its corneal feature detection

Jingyi Bai, Xuan Huang, Yiquan Zhang, Ying Tian, Yong Tao()   

  1. Master′s degree 2020, Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Department of Ophthalmology, Beijing Huairou Hospital, Capital Medical University, Beijing 101400, China
    Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
  • Received:2022-04-03 Published:2023-02-28
  • Corresponding author: Yong Tao
引用本文:

白静怡, 黄轩, 张益权, 田颖, 陶勇. 小鼠干眼模型构建及其角膜特征检测的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 12-17.

Jingyi Bai, Xuan Huang, Yiquan Zhang, Ying Tian, Yong Tao. The construction of a mouse dry eye model and its corneal feature detection[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(01): 12-17.

目的

探讨小鼠干眼模型构建及其角膜特征检测方法。

方法

选取健康无特定病原体(SPF)级C57BL/6小鼠共12只,6~8周龄,雄性,体重(20±1)g。采用数字表法将12只小鼠随机分为实验组和对照组,每组6只,选择每只小鼠的右眼用于实验。实验组6只小鼠(6只眼)右眼给予0.2%苯扎氯铵溶液5 μL局部点眼构建小鼠干眼模型,每天9:00和21:00点眼,共2次,持续7 d;对照组6只小鼠(6只眼)右眼给予磷酸盐缓冲溶液5 μL局部点眼作为正常对照,每天9:00和21:00点眼,共2次,持续7 d。在7 d时,采用动物眼科裂隙灯显微镜对实验组及对照组小鼠右眼行角膜荧光素染色检查,并进行角膜荧光素染色评分;应用ISOCT眼科超显微成像系统对实验组和对照组小鼠右眼行眼前节光学相干断层扫描(AS-OCT)检查,测量并记录角膜中央上皮层厚度。角膜荧光染色评分及角膜中央上皮层厚度符合正态分布,以(±s)进行描述,采用非配对t检验比较两组之间的差异。

结果

在应用0.2%苯扎氯铵溶液造模后7 d,角膜荧光素染色成像结果显示实验组小鼠右眼角膜透明度下降且可见点片状着染,而正常对照组角膜透明,未见明显异常改变。实验组小鼠右眼角膜荧光素染色评分均较对照组增加,分别为(10.833±0.98)分和(1.833±0.98)分,其差异具有统计学意义(t=15.85;P<0.05)。AS-OCT检查结果显示实验组小鼠右眼角膜上皮变形、厚度缺陷并呈现高反射点状角膜上皮浸润,实验组小鼠右眼角膜中央上皮层厚度较对照组明显下降,分别为(33.00±6.64)μm和(44.45±4.34)μm,其差异具有统计学意义(t=3.53 ;P<0.05)。

结论

0.2%苯扎氯铵溶液诱导的小鼠干眼模型相对稳定,AS-OCT适用于对苯扎氯铵诱导的小鼠干眼模型特征的检测,其特征主要表现为角膜上皮变形、厚度缺陷、呈高反射点状上皮浸润并存在明显的角膜中央上皮层厚度变薄。

Objective

To explore the construction of a mouse dry eye model and its corneal feature detection method.

Methods

A total of 12 healthy pathogen free (SPF) grade C57BL/6 mice, aged 6 to 8 weeks, male, weighing (20±1) g were selected. Using the number table method, 12 mice were randomly divided into an experimental group and a control group, with 6 mice in each group. The right eye of each mouse was selected for the experiment. Six mice (6 eyes) in the experimental group were given a 0.2% benzalkonium chloride solution 5 μL in their right eyes to construct a mouse dry eye model with local eye drops, twice a day at 9: 00 and 21: 00, lasting for 7 days; 6 mice in the control group (6 eyes) were given phosphate buffer solution 5 μ L in the right eye local eye drops were used as a normal control, with eye drops taken twice daily at 9: 00 and 21: 00, lasting for 7 days. At 7 days, corneal fluorescein staining was performed on the right eye of mice in the experimental and control groups using an animal ophthalmic slit lamp microscope, and corneal fluorescein staining scores were performed. The ISOCT ophthalmic ultra microscopic imaging system was used to perform optical coherence tomography (AS-OCT) examination of the anterior segment of the right eye of experimental and control group mice, and the thickness of the central corneal epithelial layer was measured. The corneal fluorescence staining score and the thickness of the central corneal epithelial layer conform to the normal distribution, and were described by (±s), and compared by the unpaired t test.

Results

Seven days after modeling with 0.2% benzalkonium chloride solution, the results of corneal fluorescein staining imaging showed that the transparency of the right eye cornea of the experimental group mice decreased and spot staining, while the cornea of the normal control group was transparent, without obvious abnormal changes. The fluorescein staining score of the right eye cornea of the experimental group mice increased compared with the control group, which were (10.833±0.98) points and (1.833±0.98) points, respectively, with a statistically significant difference (t=15.85, P<0.05). AS-OCT examination results showed that the right corneal epithelium of mice in the experimental group was deformed, with thickness defects and high reflection punctate corneal epithelial infiltration. The thickness of the central corneal epithelial layer of mice in the experimental group was significantly lower than that in the control group, which were (33.00±6.64) μ m and (44.45±4.34) μm, respectively. The difference was statistically significant (t=3.53, P<0.05).

Conclusions

The mouse dry eye model induced by 0.2% benzalkonium chloride solution is relatively stable, and AS-OCT is suitable for detecting the characteristics of the benzalkonium chloride induced mouse dry eye model. Its main features are corneal epithelial deformation, thickness defects, high reflex point like epithelial infiltration, and significant thinning of the central corneal epithelial layer.

图3 干眼小鼠模型眼前节光学相干断层扫描成像所见角膜的典型表现 图3A示正常小鼠眼前节光学相干断层扫描成像所见角膜形态; 图3B示干眼小鼠模型角膜反射率增加; 图3C示干眼小鼠模型角膜上皮变形,厚度缺陷 图3D示干眼小鼠模型角膜上皮呈现高反射点的上皮浸润; 图3E和图3F示正常小鼠眼前节光学相干断层扫描成像所示泪河高度的图像; 图3G示造模7 d时干眼小鼠模型眼前节光学相干断层扫描成像所示泪河高度的图像
[1]
Smith JA. The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop[J]. The Ocular Surface, 2007, 5(2): 93-107.
[2]
Stapleton F, Alves M, Vatinee YB, et al. Tfos Dews II Epidemiology Report[J]. The ocular surface201715(3): 334-365.
[3]
Li J, Tan G, Ding X, et al. A mouse dry eye model induced by topical administration of the air pollutant particulate matter 10[J]. Biomed Pharmacother, 2017, 96: 524-534.
[4]
Valim V, Trevisani VFM, de Sousa JM, et al. Current Approach to Dry Eye Disease[J]. Clinical Reviews in Allergy & Immunology, 2015, 49: 288-297.
[5]
马佰凯,刘容均,齐虹. 基于国际干眼新共识的干眼研究进展[J/CD]. 中华眼科医学杂志(电子版)20188(1):36-43.
[6]
Moss SE, Klein R, Klein BEK. Incidence of dry eye in an older population[J]. Archives of Ophthalmology, 2004, 122(3): 369-373.
[7]
Moss SE, KleinR, Klein BEK. Long-term Incidence of Dry Eye in an Older Population[J]. Optometry and Vision Science, 2008, 85(8): 668-674.
[8]
Song P, Xia W, Wang M, et al. Variations of dry eye disease prevalence by age, sex and geographic characteristics in China: a systematic review and meta-analysis[J]. Glob Health, 2018, 8 (2): 020503.
[9]
Jones L, Downie LE, Korb D, et al. Tfos Dews Ⅱ management and therapyreport[J]. Ocul Surf, 201715(3): 575-628.
[10]
King-Smith PE, Hinel EA, Nichols JJ. Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning[J]. Investigative Ophthalmology & Visual Science, 2010, 51(5): 2418-2423.
[11]
宿梦苍,郝晓琳,张仲臣. 干眼症眼表损害炎症机制[J]. 国际眼科杂志201515(5):821-824.
[12]
Labbé A, Liang Q, Wang Z, et al. Corneal nerve structure and function in patients with non-sjogren dry eye: clinical correlations[J]. Investigative Ophthalmology & Visual Science, 2013, 54(8): 5144-5150.
[13]
亚洲干眼协会中国分会,海峡两岸医药卫生交流协会眼科学专业委员会眼表与泪液病学组,中国医师协会眼科医师分会眼表与干眼学组. 中国干眼专家共识:定义和分类(2020年)[J]. 中华眼科杂志202056(6):418-422.
[14]
Sullivan BD, Whitmer D, Nichols KK, et al. An objective approach to dry eye disease severity[J]. Investigative Ophthalmology & Visual Science, 2010, 51(12): 6125-6130.
[15]
Chalmers RL, Begley CG, Caffery B. Validation of the 5-Item Dry Eye Questionnaire (DEQ-5): Discrimination across self-assessed severity and aqueous tear deficient dry eye diagnoses[J]. Contact Lens & Anterior Eye, 2010, 33(2): 55-60.
[16]
Sullivan BD, Crews LA, Messmer EM, et al. Correlations between commonly used objective signs and symptoms for the diagnosis of dry eye disease: clinical implications[J]. Acta Ophthalmologica, 2014, 92(2): 161-166.
[17]
Morgan PB, Maldonado-Codina C. Corneal staining: do we really understand what we are seeing?[J]. Contact Lens & Anterior Eye, 2009, 32(2): 48-54.
[18]
刘祖国. 干眼的临床诊断与治疗亟待规范化和精细化[J]. 中华眼科杂志201753(9):641-644.
[19]
Xiong C, Chen D, Liu J, et al. A rabbit dry eye model induced by topical medication of a preservative benzalkonium chloride[J]. Investigative ophthalmology & visual science, 2008, 49(5): 1850-1856.
[20]
Lin ZLiu XZhou T,et al. A mouse dry eye model induced by topical administration of benzalkonium chloride[J]. Mol Vis, 2011, 17: 257-264.
[21]
Droy-Lefaix MT, Bueno L, Caron P, et al. Ocular inflammation and corneal permeability alteration by benzalkonium chloride in rats: a protective effect of a myosin light chain kinase inhibitor[J]. Investigative Ophthalmology & Visual Science, 2013, 54: 2705-2710.
[22]
Ang M, Baskaran M, Werkmeister RM, et al. Anterior segment optical coherence tomography[J]. Progress in Retinal and Eye Research, 2018, 66: 132-156.
[23]
Veres A, Tapaszto B, Kosina-Hagyo K, et al. Imaging Lid-Parallel Conjunctival Folds with OCT and Comparing Its Grading with the Slit Lamp Classification in Dry Eye Patients and Normal Subjects[J]. Investigative ophthalmology & visual science, 2011, 52(6): 2945-2951.
[24]
Hwang HS, Chang WP, Choun KJ. Novel noncontact meibography with anterior segment optical coherence tomography: Hosik meibography[J]. Cornea, 2013, 32(1) : 40-43.
[25]
Yuqiang B, Jason JN. Advances in thickness measurements and dynamic visualization of the tear film using non-invasive optical approaches[J]. Progress in Retinal and Eye Research, 2017, 58: 28-44.
[26]
Marcus A, Konstantopoulos A, Gwendoline G, et al. Evaluation of a Micro-Optical Coherence Tomography for the Corneal Endothelium in an Animal Model[J]. Scientific Reports, 2016, 6(1): 29769.
[27]
周双双,谭钢,邵毅. 超高分辨率光学相干断层扫描在眼前节的应用进展[J]. 眼科新进展201838(1):93-97.
[28]
Osama MAI, Dogru M, Ibrahim Takano Y., et al. Application of Visante Optical Coherence Tomography Tear Meniscus Height Measurement in the Diagnosis of Dry Eye Disease[J]. Ophthalmology, 2010, 117(10) : 1923-1929.
[29]
赵博,陈革,柴珺,等. 光学相干断层扫描对糖尿病患者泪河高度和面积的测量[J]. 中国医药指南201311(16)489-491.
[30]
Nguyen P, Huang D, Li Y, et al. Correlation between optical coherence tomography-derived assessments of lower tear meniscus parameters and clinical features of dry eye disease[J]. Cornea, 2012, 31(6): 680-685.
[1] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[2] 刘甜甜, 李明, 朱含汀, 倪涛, 彭银波, 方勇. 创缘铁过载的临床样本验证与铁过载对小鼠创面愈合的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 475-481.
[3] 王胜男, 孙挥宇, 接英, 谢雯, 毛菲菲, 李丹, 鲁丹, 刘夕瑶. 慢性丙型肝炎患者干眼临床特征[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 48-54.
[4] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[5] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[6] 熊培尧, 唐雨豪, 杨子良, 朱应钦, 王骏成, 徐立. 小鼠VETC(+)肝癌模型构建及索拉非尼对VETC结构的影响[J]. 中华肝脏外科手术学电子杂志, 2022, 11(03): 315-319.
[7] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[8] 荆大兰, 江晓丹, 杨嘉瑞, 李学民. 眼表菌群改变与干眼关系的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 372-376.
[9] 程英, 安文在, 林丹婷, 王宁利. 肠道菌群与眼部常见疾病关系的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 305-309.
[10] 丁一, 郝然, 王嘉瑢, 李学民. 角膜神经改变与干眼的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 242-246.
[11] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[12] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[13] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
[14] 买买提·依斯热依力, 王永康, 吾布力卡斯木·吾拉木, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木. 基于16s rRNA测序分析心理应激小鼠肠道菌群结构特征[J]. 中华胃食管反流病电子杂志, 2022, 09(04): 181-186.
[15] 买买提·依斯热依力, 王永康, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木. 基于16s rRNA测序分析小鼠高脂饮食诱导肥胖的肠道菌群结构特征[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 12-16.
阅读次数
全文


摘要