切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (01) : 6 -11. doi: 10.3877/cma.j.issn.2095-2007.2022.01.002

论著

视黄醇脱氢酶和视网膜G蛋白偶联受体在形觉剥夺性近视眼小鼠中表达特征的实验研究
刘添添1, 陈冰洁1, 刘陇黔1,()   
  1. 1. 610041 成都,四川大学华西医院眼科
  • 收稿日期:2021-06-09 出版日期:2022-02-28
  • 通信作者: 刘陇黔
  • 基金资助:
    四川省科技计划重点研发项目(21ZDYF1415); 美国中华医学基金会应用技术项目(0040205502017)

Retinol dehydrogenase and rpe-retinal G protein-coupled receptor expression patterns in mice after monocular deprivation

Tiantian Liu1, Bingjie Chen1, Longqian Liu1,()   

  1. 1. Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041,China
  • Received:2021-06-09 Published:2022-02-28
  • Corresponding author: Longqian Liu
引用本文:

刘添添, 陈冰洁, 刘陇黔. 视黄醇脱氢酶和视网膜G蛋白偶联受体在形觉剥夺性近视眼小鼠中表达特征的实验研究[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 6-11.

Tiantian Liu, Bingjie Chen, Longqian Liu. Retinol dehydrogenase and rpe-retinal G protein-coupled receptor expression patterns in mice after monocular deprivation[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(01): 6-11.

目的

探讨视黄醇脱氢酶(RDH)和视网膜G蛋白偶联受体(RGR)在形觉剥夺性近视眼小鼠中的表达特征。

方法

采用数字表法将4周龄C57BL6/J小鼠100只(200只眼)随机分为对照组和近视组,每组各50只(100只眼)。采用自制的遮光眼罩形觉剥夺小鼠的单眼视力,构建近视眼动物模型。右眼形觉剥夺4周后,采用红外偏心摄影验光仪测量小鼠的屈光度。采用手持数字显微镜测量小鼠的眼轴长度。采用实时逆转录聚合酶链反应测量小鼠全视网膜组织中Rdh5、Rdh10及Rgr基因信使核糖核酸(mRNA)的相对表达量。采用蛋白质免疫印迹法测量小鼠全视网膜组织中RDH5、RDH10及RGR蛋白的表达水平。两组小鼠屈光度、眼轴长度、基因的mRNA相对表达量及蛋白质相对灰度值采用±s表示。两组小鼠屈光度的比较采用配对t检验;眼轴长度、基因mRNA相对表达量及蛋白质相对灰度值的总体差异采用单因素方差分析,当差异有统计学意义时,再进一步采用LSD检验两两比较。

结果

近视组小鼠遮盖眼和对侧眼的屈光度分别为(-5.631±4.052)D和(4.231±2.828)D。近视组小鼠遮盖眼呈现出明显的近视漂移,两者比较的差异有统计学意义(t=-10.91,P<0.05)。对照组右眼和左眼的屈光度分别为(3.774±4.079)D和(4.171±4.425)D,两者比较的差异无统计学意义(t=-1.344,P>0.05)。近视组小鼠遮盖眼、对侧眼及对照组眼轴分别为(3305.0±86.4)μm、(3221.0±90.0)μm及(3232.0±68.6)μm。遮盖眼眼轴最长,三者比较的差异均有统计学意义(F=6.248,P<0.05)。近视组小鼠遮盖眼Rdh5、Rdh10及Rgr基因mRNA的相对表达量分别为(2.032±0.162)、(2.611±0.258)及(3.876±0.576),均略低于对侧眼。近视组小鼠遮盖眼Rdh5、Rdh10及Rgr基因的mRNA相对表达量高于对照组。经单因素方差分析,两组比较的差异均有统计学意义(F=38.671,88.510,78.557;P<0.05)。近视组和对照组小鼠RDH5、RDH10及RGR蛋白质相对灰度值的趋势仅与基因的mRNA相对表达量趋势部分一致。近视组小鼠遮盖眼RDH5、RDH10及RGR蛋白质的相对灰度值低于对侧眼和对照组。经单因素方差分析,两组比较的差异均有统计学意义(F=12.189,56.956,6.620;P<0.05)。

结论

单眼形觉剥夺刺激能升高Rdh5、Rdh10及Rgr基因的mRNA相对表达量,但其蛋白质相对灰度值改变不一致,近视眼小鼠视网膜的RDH5和RDH10蛋白质相对灰度值高,而RGR低。异常的视觉刺激可能抑制RDH的生成,影响视觉周期反应,促进近视眼的发展。

Objective

The aim of this study was to examine the expression pattern differences of retinol dehydrogenase (RDH) and rpe-retinal G protein-coupled receptor (RGR) in deprivation myopic mice.

Methods

100 four-week-old C57BL6/J mice (200 eyes) were randomly distributed into myopia group and control group, 50 for each group (100 eyes). Monocular deprivation of was induced by covering the right eyes with handmade, translucent occluders, while the left eyes served as contralateral eyes. Mean-while, the control group received no treatment. After deprivation for four weeks, refraction errors were measured via an eccentric infrared photorefractor, and axial lengths were estimated using a hand-held digital microscope. The messenger ribonucleic acid (mRNA) transcript levels of Rdh5, Rdh10 and Rgr genes were detected using real-time reverse transcription polymerase chain reaction. The corresponding protein concentrations of these genes were detected by Western blot analysis. Refractive errors, axial length, mRNA levels and the relative gray value of protein were described as ±s. The refraction interocular difference was used to compare by paired t-test. One-way ANOVA was used to determine statistic differences in axial length, mRNA levels and relative gray value of protein among multiple samples, and the LSD test was used for further pairwise comparisons.

Results

The refractive error of the covered myopic eyes and contralateral eyes in myopia group were (-5.631±4.052) D, (4.231±2.828) D, resepctively. There was a significant difference between them (t=-10.914, P<0.05). The control group was found to have refractive error for right and left eyes, which were (3.774±4.079) D and (4.171±4.425) D, respectively. There was not a significant difference between them (t=-1.344, P>0.05). The axial length of covered myopic eyes, contralateral eyes and control group were (3305.0±86.4) μm, (3221.0±90.0) μm and (3232.0±68.6) μm, respectively. After one-way ANOVA, there was a statistically significant difference among them (F=6.248, P<0.05). In the retinas of covered myopic eyes, the relative mRNA levels of Rdh5, Rdh10 and Rgr genes was (2.032±0.162), (2.611±0.258) and (3.876±0.576), respectively, which were all lower than that in the contralateral retinas. Compared with control group, the mRNA levels of gene increased significantly in myopia group. After one-way ANOVA, there was a significant difference between them (F=38.671, 88.510, 78.557; P<0.05). The results of Western blot analysis showed that relative gray value of protein expression pattern of these genes in myopic group were in accordance with the mRNA expression trend. The relative gray value of proteins of RDH5, RDH10 and RGR in covered myopic eyes were lower than that in the contralateral uncovered eyes. After one-way ANOVA, there was a significant difference between them (F=12.189, 56.956, 6.620; P<0.05).

Conclusions

Early monocular deprivation induces a robust increase in mRNA levels of Rdh5, Rdh10 and Rgr genes, while the relative gray value of protein is inconsistent with that. The relative gray value of protein of RDH5 and RDH10 are high, and RGR low in covered myopic eyes. Abnormal visual stimulus is helpful to impede the expression of retinol dehydrogenases and promote the myopia progression through the potential effects of visual cycle.

表1 实时逆转录聚合酶链反应引物序列
表2 两组小鼠形觉剥夺4周后屈光度的比较(±s,D)
表3 两组小鼠形觉剥夺4周后眼轴长度的比较(±s,μm)
图2 两组小鼠形觉剥夺4周后全视网膜组织中RDH5、RDH10及RGR蛋白质相对表达量的比较 图2A示蛋白质印迹灰度图;图2B示蛋白条带灰度值的比值 注:RDH5,视黄醇脱氢酶5;RDH10,视黄醇脱氢酶10;RGR,视网膜G蛋白偶联受体;mRNA,信使核糖核酸;*,差异有统计学意义
[1]
Baird PN, Saw SM, Lanca C, et al. Myopia[J]. Nat Rev Dis Primers, 2020, 6(1): 99.
[2]
Xiang ZY, Zou HD. Recent epidemiology study data of myopia[J]. J Ophthalmol, 2020, 7: 1-12.
[3]
Ikuno Y. Overview of the complications of high myopia[J]. Retina, 2017, 37(12): 2347-2351.
[4]
Troilo D, Smith EL, Nickal DL, et al. IMI-report on experimental models of emmetropization and myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M31-M88.
[5]
Tedja MS, Wojciechowaki R, Hysi PG, et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error[J]. Nat Genet, 2018, 50(6): 834-848.
[6]
Tedja MS, Haarman AEG, Meester MA, et al. IMI-Myopia genetics report[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M89-M105.
[7]
瞿佳,李瑾. 近视眼发生和发展机制研究的新进展[J]. 中华眼科杂志202157(4):311-314.
[8]
Kiefer AK, Tung JY, Do CB, et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia[J]. PLoS Genetics, 2013, 9(2): e1003299.
[9]
Kiser PD, Palczewski K. Pathways and disease-causing alterations in visual chromophore production for vertebrate vision[J]. J Biol Chem, 2020, 296: 100072.
[10]
Sahu B, Maeda A. Retinol dehydrogenases regulate vitamin A metabolism for visual function[J]. Nutrients, 2016, 8(11): 746.
[11]
Ward R, Sundaramurthi H, Di-Giacomo V, et al. Enhancing understanding of the visual cycle by applying CRISPR/Cas9 gene editing in zebrafish[J]. Front Cell Dev Biol, 2018, 6(37): 1-13.
[12]
Daruwalla A, Choi EH, Pal-Czewski K, et al. Structural biology of 11-cis-retinaldehyde production in the classical visual cycle[J]. Biochem J, 2018, 475(20): 3171-3188.
[13]
Katagiri S, Hayashi T, Nakamura M, et al. Rdh5-related fundus albipunctatus in a large japanese cohort[J]. Invest Ophth Vis Sci, 2020, 61(3): 53.
[14]
毛玉梅,杨琴,兰长骏,等.视黄醇脱氢酶5在视觉周期和遗传性视网膜疾病中的研究进展[J]. 国际眼科杂志202121(2):266-269.
[15]
Liu X, Liu L, Li H, et al. Rdh5 retinopathy (fundus albipunctatus) with preserved rod function[J]. Retina, 2015, 35(3): 582-589.
[16]
Sahu B, Sun W, Perusek L, et al. Conditional ablation of retinol dehydrogenase 10 in the retinal pigmented epithelium causes delayed dark adaption in mice[J]. J Biol Chem, 2015, 290(45): 27239-27247.
[17]
Xue Y, Sato S, Razafsky D, et al. The role of retinol dehydrogenase 10 in the cone visual cycle[J]. Sci Rep, 2017, 7(1): 2390.
[18]
Morshedian A, Kayylor J, Ng SY, et al. Light-driven regeneration of cone visual pigments through a mechanism involving Rgr opsin in muller glial cells[J]. Neuron, 2019, 102(6): 1172-1183.
[19]
Choi EH, Daruwalla A, Suh S, et al. Retinoids in the visual cycle: role of the retinal G protein-coupled receptor[J]. J Lipid Res, 2021, 62: 100040.
[20]
Morimura H, Saindelle-Ribeaudeau F, Berson EL, et al. Mutations in Rgr, encoding a light-sensitive opsin homologue, in patients with retinitis pigmentosa[J]. Nat Genet, 1999, 23(4): 393-394.
[21]
Troilo D, Gottlieb D, Wallman J. Visual deprivation causes myopia in chicks with optic nerve section[J]. Curr Eye Res, 1987, 6(8): 993-999.
[22]
Mcfadden SA, Wildsoet C. The effect of optic nerve section on form deprivation myopia in the guinea pig[J]. J Comp Neurol, 2020, 528(17): 2874-2887.
[23]
Yu M, Liu W, Wang B, et al. Short wavelength (blue) light is protective for lens-induced myopia in guinea pigs potentially through a retinoic acid-related mechanism[J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 21.
[24]
Seko Y, Shimizu M, Tokoro T. Retinoic acid increases in the retina of the chick with form deprivation myopia[J]. Ophthalmic Res, 1998, 30(6): 361-367.
[25]
Zhang Y, Wildsoet CF. Rpe and choroid mechanisms underlying ocular growth and myopia[J]. Prog Mol Biol Transl Sci, 2015, 134: 221-240.
[26]
Samarawickrama C, Chew S, Watson S. Retinoic acid and the ocular surface[J]. Surv Ophthalmol, 2015, 60(3): 183-195.
[27]
Nadauld LD, Chidester S, Shelton DN, et al. Dual roles for adenomatous polyposis coli in regulating retinoic acid biosynthesis and Wnt during ocular development[J]. Proc Natl Acad Sci USA, 2006, 103(36): 13409-13414.
[28]
Grochowski ET, Pietrowska K, Kowalczyk T, et al. Omics in Myopia[J]. J Clin Med, 2020, 9(11): 3464.
[29]
Wu XH, Li YY, Zhang PP, et al. Unaltered retinal dopamine levels in a C57BL/6 mouse model of form-deprivation myopia[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 967-977.
[30]
Hu S, Ouyang S, Liu H, et al. The effect of Wnt/β-catenin pathway on the scleral remolding in the mouse during form deprivation[J]. Int Ophthalmol, 2021, 41(9): 3099-3107.
[31]
Zhao F, Li Q, Chen W, et al. Dysfunction of VIPR2 leads to myopia in humans and mice[J]. J Med Genet, 2020, 59(1): 88-100.
[32]
Maeda T, Van Hooser JP, Driessen CA, et al. Evaluation of the role of the retinal G protein-coupled receptor (RGR) in the vertebrate retina in vivo[J]. J Neurochem.2003, 85(4): 944-956.
[33]
Palczewski K, Kiser PD. Shedding new light on the generation of the visual chromophore[J]. Proc Natl Acad Sci USA, 2020, 117(33): 19629-19638.
[34]
Rada JA, Hollaway LR, Lam W, et al. Identification of RALDH2 as a visually regulated retinoic acid synthesizing enzyme in the chick choroid[J]. Invest Ophthalmol Vis Sci, 2012, 53(3): 1649-1662.
[35]
李娇,李娟,梁见楠,等. 银屑病患者皮损间充质干细胞磷脂酶C-β4和视黄醇脱氢酶10表达水平的研究[J]. 临床皮肤科杂志201847(11):700-704.
[36]
Long Q, Ye J, Li Y, et al. C-reactive protein and complement components in patients with pathological myopia[J]. Optom Vis Sci, 2013, 90(5): 501-506.
[37]
Gao TT, Long Q, Yang X. Complement factors c1q, C3 and c5b-9 in the posterior sclera of guinea pigs with negative lens-defocused myopia[J]. Int J Ophthalmol, 2015, 8(4): 675-680.
[38]
Chen P, Lee TD, Fong HK. Interaction of 11-cis-retinol dehydrogenase with the chromophore of retinal g protein-coupled receptor opsin[J]. J Biol Chem, 2001, 276(24): 21098-21104.
[39]
Golczak M, Kiser PD, Lodowski DT, et al. Importance of membrane structural integrity for RPE65 retinoid isomerization activity[J]. J Biol Chem, 2010, 285(13): 9667-9682.
[40]
Morshedian A, Kaylor JJ, Ng SY, et al. Light-driven regeneration of cone visual pigments through a mechanism involving RGR opsin in müller glial cells[J]. Neuron, 2019, 102(6): 1172-1183.
[41]
Greenbaum D, Colangelo C, Williams K, et al. Comparing protein abundance and mRNA expression levels on a genomic scale[J]. Genome Biol, 2003, 4(9): 117.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[3] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[4] 吴瑟菲, 苗金红, 谭舒眉, 李学民, 韩亮, 次仁琼达, 央珍, 胡晋平. 纯全氟丙烷填充联合玻璃体切割术治疗视网膜脱离的临床疗效观察[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 205-209.
[5] 崔宏宇, 杨一佺, 郭黎霞, 吕爱国, 张志宏, 张新, 杨艳萍, 申然, 连丽英, 曹志刚, 王立芳, 胡建华, 范肃洁. 改良Ahmed青光眼引流阀植入术治疗闭角期新生血管性青光眼疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 76-81.
[6] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[7] 陈子扬, 谢立科, 郝晓凤, 张小艳. 抗磷脂抗体相关视网膜血管阻塞的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 367-371.
[8] 赵一鸣, 杨瑶, 林晓峰. 玻璃体腔注射低浓度碱溶液诱导小鼠视网膜内增殖模型的实验研究[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 268-274.
[9] 李茹月, 李明华, 张凯文, 张悦, 牟大鹏, 王宁利, 刘含若. 早期筛查老年人群糖尿病视网膜病变的卫生经济学分析[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 216-221.
[10] 汪东生, 吴理达, 顾雨春. 细胞基因疗法在视网膜退行性疾病中的应用和挑战[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 129-133.
[11] 付鹏, 沈念, 黄艳玲, 杨水平, 万小波. 外伤性晶状体脱位合并周边隐匿性视网膜病变的临床特征及预后分析[J]. 中华临床医师杂志(电子版), 2022, 16(06): 536-540.
[12] 郑小迪, 甘海润, 蔡建勋, 李露婷, 庞鹏飞, 李冰. PLK3基因Y318H罕见突变促进视网膜母细胞瘤的生长[J]. 中华介入放射学电子杂志, 2023, 11(02): 146-154.
[13] 李冰, 甘海润, 蔡建勋, 龙浩宇, 李露婷. 血管内皮细胞Ddx24基因条件性敲除鼠构建以及对视网膜血管新生的影响[J]. 中华介入放射学电子杂志, 2022, 10(04): 429-435.
[14] 王亮, 郭磊, 李海波, 刘壮, 宋丹, 李静, 张靖. 经后交通动脉进行眼动脉灌注化疗术治疗儿童视网膜母细胞瘤的多中心经验[J]. 中华介入放射学电子杂志, 2022, 10(04): 414-417.
[15] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
阅读次数
全文


摘要