[1] |
Baird PN, Saw SM, Lanca C, et al. Myopia[J]. Nat Rev Dis Primers, 2020, 6(1): 99.
|
[2] |
Xiang ZY, Zou HD. Recent epidemiology study data of myopia[J]. J Ophthalmol, 2020, 7: 1-12.
|
[3] |
Ikuno Y. Overview of the complications of high myopia[J]. Retina, 2017, 37(12): 2347-2351.
|
[4] |
Troilo D, Smith EL, Nickal DL, et al. IMI-report on experimental models of emmetropization and myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M31-M88.
|
[5] |
Tedja MS, Wojciechowaki R, Hysi PG, et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error[J]. Nat Genet, 2018, 50(6): 834-848.
|
[6] |
Tedja MS, Haarman AEG, Meester MA, et al. IMI-Myopia genetics report[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M89-M105.
|
[7] |
瞿佳,李瑾. 近视眼发生和发展机制研究的新进展[J]. 中华眼科杂志,2021,57(4):311-314.
|
[8] |
Kiefer AK, Tung JY, Do CB, et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia[J]. PLoS Genetics, 2013, 9(2): e1003299.
|
[9] |
Kiser PD, Palczewski K. Pathways and disease-causing alterations in visual chromophore production for vertebrate vision[J]. J Biol Chem, 2020, 296: 100072.
|
[10] |
Sahu B, Maeda A. Retinol dehydrogenases regulate vitamin A metabolism for visual function[J]. Nutrients, 2016, 8(11): 746.
|
[11] |
Ward R, Sundaramurthi H, Di-Giacomo V, et al. Enhancing understanding of the visual cycle by applying CRISPR/Cas9 gene editing in zebrafish[J]. Front Cell Dev Biol, 2018, 6(37): 1-13.
|
[12] |
Daruwalla A, Choi EH, Pal-Czewski K, et al. Structural biology of 11-cis-retinaldehyde production in the classical visual cycle[J]. Biochem J, 2018, 475(20): 3171-3188.
|
[13] |
Katagiri S, Hayashi T, Nakamura M, et al. Rdh5-related fundus albipunctatus in a large japanese cohort[J]. Invest Ophth Vis Sci, 2020, 61(3): 53.
|
[14] |
毛玉梅,杨琴,兰长骏,等.视黄醇脱氢酶5在视觉周期和遗传性视网膜疾病中的研究进展[J]. 国际眼科杂志,2021,21(2):266-269.
|
[15] |
Liu X, Liu L, Li H, et al. Rdh5 retinopathy (fundus albipunctatus) with preserved rod function[J]. Retina, 2015, 35(3): 582-589.
|
[16] |
Sahu B, Sun W, Perusek L, et al. Conditional ablation of retinol dehydrogenase 10 in the retinal pigmented epithelium causes delayed dark adaption in mice[J]. J Biol Chem, 2015, 290(45): 27239-27247.
|
[17] |
Xue Y, Sato S, Razafsky D, et al. The role of retinol dehydrogenase 10 in the cone visual cycle[J]. Sci Rep, 2017, 7(1): 2390.
|
[18] |
Morshedian A, Kayylor J, Ng SY, et al. Light-driven regeneration of cone visual pigments through a mechanism involving Rgr opsin in muller glial cells[J]. Neuron, 2019, 102(6): 1172-1183.
|
[19] |
Choi EH, Daruwalla A, Suh S, et al. Retinoids in the visual cycle: role of the retinal G protein-coupled receptor[J]. J Lipid Res, 2021, 62: 100040.
|
[20] |
Morimura H, Saindelle-Ribeaudeau F, Berson EL, et al. Mutations in Rgr, encoding a light-sensitive opsin homologue, in patients with retinitis pigmentosa[J]. Nat Genet, 1999, 23(4): 393-394.
|
[21] |
Troilo D, Gottlieb D, Wallman J. Visual deprivation causes myopia in chicks with optic nerve section[J]. Curr Eye Res, 1987, 6(8): 993-999.
|
[22] |
Mcfadden SA, Wildsoet C. The effect of optic nerve section on form deprivation myopia in the guinea pig[J]. J Comp Neurol, 2020, 528(17): 2874-2887.
|
[23] |
Yu M, Liu W, Wang B, et al. Short wavelength (blue) light is protective for lens-induced myopia in guinea pigs potentially through a retinoic acid-related mechanism[J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 21.
|
[24] |
Seko Y, Shimizu M, Tokoro T. Retinoic acid increases in the retina of the chick with form deprivation myopia[J]. Ophthalmic Res, 1998, 30(6): 361-367.
|
[25] |
Zhang Y, Wildsoet CF. Rpe and choroid mechanisms underlying ocular growth and myopia[J]. Prog Mol Biol Transl Sci, 2015, 134: 221-240.
|
[26] |
Samarawickrama C, Chew S, Watson S. Retinoic acid and the ocular surface[J]. Surv Ophthalmol, 2015, 60(3): 183-195.
|
[27] |
Nadauld LD, Chidester S, Shelton DN, et al. Dual roles for adenomatous polyposis coli in regulating retinoic acid biosynthesis and Wnt during ocular development[J]. Proc Natl Acad Sci USA, 2006, 103(36): 13409-13414.
|
[28] |
Grochowski ET, Pietrowska K, Kowalczyk T, et al. Omics in Myopia[J]. J Clin Med, 2020, 9(11): 3464.
|
[29] |
Wu XH, Li YY, Zhang PP, et al. Unaltered retinal dopamine levels in a C57BL/6 mouse model of form-deprivation myopia[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 967-977.
|
[30] |
Hu S, Ouyang S, Liu H, et al. The effect of Wnt/β-catenin pathway on the scleral remolding in the mouse during form deprivation[J]. Int Ophthalmol, 2021, 41(9): 3099-3107.
|
[31] |
Zhao F, Li Q, Chen W, et al. Dysfunction of VIPR2 leads to myopia in humans and mice[J]. J Med Genet, 2020, 59(1): 88-100.
|
[32] |
Maeda T, Van Hooser JP, Driessen CA, et al. Evaluation of the role of the retinal G protein-coupled receptor (RGR) in the vertebrate retina in vivo[J]. J Neurochem.2003, 85(4): 944-956.
|
[33] |
Palczewski K, Kiser PD. Shedding new light on the generation of the visual chromophore[J]. Proc Natl Acad Sci USA, 2020, 117(33): 19629-19638.
|
[34] |
Rada JA, Hollaway LR, Lam W, et al. Identification of RALDH2 as a visually regulated retinoic acid synthesizing enzyme in the chick choroid[J]. Invest Ophthalmol Vis Sci, 2012, 53(3): 1649-1662.
|
[35] |
李娇,李娟,梁见楠,等. 银屑病患者皮损间充质干细胞磷脂酶C-β4和视黄醇脱氢酶10表达水平的研究[J]. 临床皮肤科杂志,2018,47(11):700-704.
|
[36] |
Long Q, Ye J, Li Y, et al. C-reactive protein and complement components in patients with pathological myopia[J]. Optom Vis Sci, 2013, 90(5): 501-506.
|
[37] |
Gao TT, Long Q, Yang X. Complement factors c1q, C3 and c5b-9 in the posterior sclera of guinea pigs with negative lens-defocused myopia[J]. Int J Ophthalmol, 2015, 8(4): 675-680.
|
[38] |
Chen P, Lee TD, Fong HK. Interaction of 11-cis-retinol dehydrogenase with the chromophore of retinal g protein-coupled receptor opsin[J]. J Biol Chem, 2001, 276(24): 21098-21104.
|
[39] |
Golczak M, Kiser PD, Lodowski DT, et al. Importance of membrane structural integrity for RPE65 retinoid isomerization activity[J]. J Biol Chem, 2010, 285(13): 9667-9682.
|
[40] |
Morshedian A, Kaylor JJ, Ng SY, et al. Light-driven regeneration of cone visual pigments through a mechanism involving RGR opsin in müller glial cells[J]. Neuron, 2019, 102(6): 1172-1183.
|
[41] |
Greenbaum D, Colangelo C, Williams K, et al. Comparing protein abundance and mRNA expression levels on a genomic scale[J]. Genome Biol, 2003, 4(9): 117.
|