切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (01) : 6 -11. doi: 10.3877/cma.j.issn.2095-2007.2022.01.002

论著

视黄醇脱氢酶和视网膜G蛋白偶联受体在形觉剥夺性近视眼小鼠中表达特征的实验研究
刘添添1, 陈冰洁1, 刘陇黔1,()   
  1. 1. 610041 成都,四川大学华西医院眼科
  • 收稿日期:2021-06-09 出版日期:2022-02-28
  • 通信作者: 刘陇黔
  • 基金资助:
    四川省科技计划重点研发项目(21ZDYF1415); 美国中华医学基金会应用技术项目(0040205502017)

Retinol dehydrogenase and rpe-retinal G protein-coupled receptor expression patterns in mice after monocular deprivation

Tiantian Liu1, Bingjie Chen1, Longqian Liu1,()   

  1. 1. Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041,China
  • Received:2021-06-09 Published:2022-02-28
  • Corresponding author: Longqian Liu
引用本文:

刘添添, 陈冰洁, 刘陇黔. 视黄醇脱氢酶和视网膜G蛋白偶联受体在形觉剥夺性近视眼小鼠中表达特征的实验研究[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(01): 6-11.

Tiantian Liu, Bingjie Chen, Longqian Liu. Retinol dehydrogenase and rpe-retinal G protein-coupled receptor expression patterns in mice after monocular deprivation[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(01): 6-11.

目的

探讨视黄醇脱氢酶(RDH)和视网膜G蛋白偶联受体(RGR)在形觉剥夺性近视眼小鼠中的表达特征。

方法

采用数字表法将4周龄C57BL6/J小鼠100只(200只眼)随机分为对照组和近视组,每组各50只(100只眼)。采用自制的遮光眼罩形觉剥夺小鼠的单眼视力,构建近视眼动物模型。右眼形觉剥夺4周后,采用红外偏心摄影验光仪测量小鼠的屈光度。采用手持数字显微镜测量小鼠的眼轴长度。采用实时逆转录聚合酶链反应测量小鼠全视网膜组织中Rdh5、Rdh10及Rgr基因信使核糖核酸(mRNA)的相对表达量。采用蛋白质免疫印迹法测量小鼠全视网膜组织中RDH5、RDH10及RGR蛋白的表达水平。两组小鼠屈光度、眼轴长度、基因的mRNA相对表达量及蛋白质相对灰度值采用±s表示。两组小鼠屈光度的比较采用配对t检验;眼轴长度、基因mRNA相对表达量及蛋白质相对灰度值的总体差异采用单因素方差分析,当差异有统计学意义时,再进一步采用LSD检验两两比较。

结果

近视组小鼠遮盖眼和对侧眼的屈光度分别为(-5.631±4.052)D和(4.231±2.828)D。近视组小鼠遮盖眼呈现出明显的近视漂移,两者比较的差异有统计学意义(t=-10.91,P<0.05)。对照组右眼和左眼的屈光度分别为(3.774±4.079)D和(4.171±4.425)D,两者比较的差异无统计学意义(t=-1.344,P>0.05)。近视组小鼠遮盖眼、对侧眼及对照组眼轴分别为(3305.0±86.4)μm、(3221.0±90.0)μm及(3232.0±68.6)μm。遮盖眼眼轴最长,三者比较的差异均有统计学意义(F=6.248,P<0.05)。近视组小鼠遮盖眼Rdh5、Rdh10及Rgr基因mRNA的相对表达量分别为(2.032±0.162)、(2.611±0.258)及(3.876±0.576),均略低于对侧眼。近视组小鼠遮盖眼Rdh5、Rdh10及Rgr基因的mRNA相对表达量高于对照组。经单因素方差分析,两组比较的差异均有统计学意义(F=38.671,88.510,78.557;P<0.05)。近视组和对照组小鼠RDH5、RDH10及RGR蛋白质相对灰度值的趋势仅与基因的mRNA相对表达量趋势部分一致。近视组小鼠遮盖眼RDH5、RDH10及RGR蛋白质的相对灰度值低于对侧眼和对照组。经单因素方差分析,两组比较的差异均有统计学意义(F=12.189,56.956,6.620;P<0.05)。

结论

单眼形觉剥夺刺激能升高Rdh5、Rdh10及Rgr基因的mRNA相对表达量,但其蛋白质相对灰度值改变不一致,近视眼小鼠视网膜的RDH5和RDH10蛋白质相对灰度值高,而RGR低。异常的视觉刺激可能抑制RDH的生成,影响视觉周期反应,促进近视眼的发展。

Objective

The aim of this study was to examine the expression pattern differences of retinol dehydrogenase (RDH) and rpe-retinal G protein-coupled receptor (RGR) in deprivation myopic mice.

Methods

100 four-week-old C57BL6/J mice (200 eyes) were randomly distributed into myopia group and control group, 50 for each group (100 eyes). Monocular deprivation of was induced by covering the right eyes with handmade, translucent occluders, while the left eyes served as contralateral eyes. Mean-while, the control group received no treatment. After deprivation for four weeks, refraction errors were measured via an eccentric infrared photorefractor, and axial lengths were estimated using a hand-held digital microscope. The messenger ribonucleic acid (mRNA) transcript levels of Rdh5, Rdh10 and Rgr genes were detected using real-time reverse transcription polymerase chain reaction. The corresponding protein concentrations of these genes were detected by Western blot analysis. Refractive errors, axial length, mRNA levels and the relative gray value of protein were described as ±s. The refraction interocular difference was used to compare by paired t-test. One-way ANOVA was used to determine statistic differences in axial length, mRNA levels and relative gray value of protein among multiple samples, and the LSD test was used for further pairwise comparisons.

Results

The refractive error of the covered myopic eyes and contralateral eyes in myopia group were (-5.631±4.052) D, (4.231±2.828) D, resepctively. There was a significant difference between them (t=-10.914, P<0.05). The control group was found to have refractive error for right and left eyes, which were (3.774±4.079) D and (4.171±4.425) D, respectively. There was not a significant difference between them (t=-1.344, P>0.05). The axial length of covered myopic eyes, contralateral eyes and control group were (3305.0±86.4) μm, (3221.0±90.0) μm and (3232.0±68.6) μm, respectively. After one-way ANOVA, there was a statistically significant difference among them (F=6.248, P<0.05). In the retinas of covered myopic eyes, the relative mRNA levels of Rdh5, Rdh10 and Rgr genes was (2.032±0.162), (2.611±0.258) and (3.876±0.576), respectively, which were all lower than that in the contralateral retinas. Compared with control group, the mRNA levels of gene increased significantly in myopia group. After one-way ANOVA, there was a significant difference between them (F=38.671, 88.510, 78.557; P<0.05). The results of Western blot analysis showed that relative gray value of protein expression pattern of these genes in myopic group were in accordance with the mRNA expression trend. The relative gray value of proteins of RDH5, RDH10 and RGR in covered myopic eyes were lower than that in the contralateral uncovered eyes. After one-way ANOVA, there was a significant difference between them (F=12.189, 56.956, 6.620; P<0.05).

Conclusions

Early monocular deprivation induces a robust increase in mRNA levels of Rdh5, Rdh10 and Rgr genes, while the relative gray value of protein is inconsistent with that. The relative gray value of protein of RDH5 and RDH10 are high, and RGR low in covered myopic eyes. Abnormal visual stimulus is helpful to impede the expression of retinol dehydrogenases and promote the myopia progression through the potential effects of visual cycle.

表1 实时逆转录聚合酶链反应引物序列
表2 两组小鼠形觉剥夺4周后屈光度的比较(±s,D)
表3 两组小鼠形觉剥夺4周后眼轴长度的比较(±s,μm)
图2 两组小鼠形觉剥夺4周后全视网膜组织中RDH5、RDH10及RGR蛋白质相对表达量的比较 图2A示蛋白质印迹灰度图;图2B示蛋白条带灰度值的比值 注:RDH5,视黄醇脱氢酶5;RDH10,视黄醇脱氢酶10;RGR,视网膜G蛋白偶联受体;mRNA,信使核糖核酸;*,差异有统计学意义
[1]
Baird PN, Saw SM, Lanca C, et al. Myopia[J]. Nat Rev Dis Primers, 2020, 6(1): 99.
[2]
Xiang ZY, Zou HD. Recent epidemiology study data of myopia[J]. J Ophthalmol, 2020, 7: 1-12.
[3]
Ikuno Y. Overview of the complications of high myopia[J]. Retina, 2017, 37(12): 2347-2351.
[4]
Troilo D, Smith EL, Nickal DL, et al. IMI-report on experimental models of emmetropization and myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M31-M88.
[5]
Tedja MS, Wojciechowaki R, Hysi PG, et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error[J]. Nat Genet, 2018, 50(6): 834-848.
[6]
Tedja MS, Haarman AEG, Meester MA, et al. IMI-Myopia genetics report[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M89-M105.
[7]
瞿佳,李瑾. 近视眼发生和发展机制研究的新进展[J]. 中华眼科杂志202157(4):311-314.
[8]
Kiefer AK, Tung JY, Do CB, et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia[J]. PLoS Genetics, 2013, 9(2): e1003299.
[9]
Kiser PD, Palczewski K. Pathways and disease-causing alterations in visual chromophore production for vertebrate vision[J]. J Biol Chem, 2020, 296: 100072.
[10]
Sahu B, Maeda A. Retinol dehydrogenases regulate vitamin A metabolism for visual function[J]. Nutrients, 2016, 8(11): 746.
[11]
Ward R, Sundaramurthi H, Di-Giacomo V, et al. Enhancing understanding of the visual cycle by applying CRISPR/Cas9 gene editing in zebrafish[J]. Front Cell Dev Biol, 2018, 6(37): 1-13.
[12]
Daruwalla A, Choi EH, Pal-Czewski K, et al. Structural biology of 11-cis-retinaldehyde production in the classical visual cycle[J]. Biochem J, 2018, 475(20): 3171-3188.
[13]
Katagiri S, Hayashi T, Nakamura M, et al. Rdh5-related fundus albipunctatus in a large japanese cohort[J]. Invest Ophth Vis Sci, 2020, 61(3): 53.
[14]
毛玉梅,杨琴,兰长骏,等.视黄醇脱氢酶5在视觉周期和遗传性视网膜疾病中的研究进展[J]. 国际眼科杂志202121(2):266-269.
[15]
Liu X, Liu L, Li H, et al. Rdh5 retinopathy (fundus albipunctatus) with preserved rod function[J]. Retina, 2015, 35(3): 582-589.
[16]
Sahu B, Sun W, Perusek L, et al. Conditional ablation of retinol dehydrogenase 10 in the retinal pigmented epithelium causes delayed dark adaption in mice[J]. J Biol Chem, 2015, 290(45): 27239-27247.
[17]
Xue Y, Sato S, Razafsky D, et al. The role of retinol dehydrogenase 10 in the cone visual cycle[J]. Sci Rep, 2017, 7(1): 2390.
[18]
Morshedian A, Kayylor J, Ng SY, et al. Light-driven regeneration of cone visual pigments through a mechanism involving Rgr opsin in muller glial cells[J]. Neuron, 2019, 102(6): 1172-1183.
[19]
Choi EH, Daruwalla A, Suh S, et al. Retinoids in the visual cycle: role of the retinal G protein-coupled receptor[J]. J Lipid Res, 2021, 62: 100040.
[20]
Morimura H, Saindelle-Ribeaudeau F, Berson EL, et al. Mutations in Rgr, encoding a light-sensitive opsin homologue, in patients with retinitis pigmentosa[J]. Nat Genet, 1999, 23(4): 393-394.
[21]
Troilo D, Gottlieb D, Wallman J. Visual deprivation causes myopia in chicks with optic nerve section[J]. Curr Eye Res, 1987, 6(8): 993-999.
[22]
Mcfadden SA, Wildsoet C. The effect of optic nerve section on form deprivation myopia in the guinea pig[J]. J Comp Neurol, 2020, 528(17): 2874-2887.
[23]
Yu M, Liu W, Wang B, et al. Short wavelength (blue) light is protective for lens-induced myopia in guinea pigs potentially through a retinoic acid-related mechanism[J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 21.
[24]
Seko Y, Shimizu M, Tokoro T. Retinoic acid increases in the retina of the chick with form deprivation myopia[J]. Ophthalmic Res, 1998, 30(6): 361-367.
[25]
Zhang Y, Wildsoet CF. Rpe and choroid mechanisms underlying ocular growth and myopia[J]. Prog Mol Biol Transl Sci, 2015, 134: 221-240.
[26]
Samarawickrama C, Chew S, Watson S. Retinoic acid and the ocular surface[J]. Surv Ophthalmol, 2015, 60(3): 183-195.
[27]
Nadauld LD, Chidester S, Shelton DN, et al. Dual roles for adenomatous polyposis coli in regulating retinoic acid biosynthesis and Wnt during ocular development[J]. Proc Natl Acad Sci USA, 2006, 103(36): 13409-13414.
[28]
Grochowski ET, Pietrowska K, Kowalczyk T, et al. Omics in Myopia[J]. J Clin Med, 2020, 9(11): 3464.
[29]
Wu XH, Li YY, Zhang PP, et al. Unaltered retinal dopamine levels in a C57BL/6 mouse model of form-deprivation myopia[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 967-977.
[30]
Hu S, Ouyang S, Liu H, et al. The effect of Wnt/β-catenin pathway on the scleral remolding in the mouse during form deprivation[J]. Int Ophthalmol, 2021, 41(9): 3099-3107.
[31]
Zhao F, Li Q, Chen W, et al. Dysfunction of VIPR2 leads to myopia in humans and mice[J]. J Med Genet, 2020, 59(1): 88-100.
[32]
Maeda T, Van Hooser JP, Driessen CA, et al. Evaluation of the role of the retinal G protein-coupled receptor (RGR) in the vertebrate retina in vivo[J]. J Neurochem.2003, 85(4): 944-956.
[33]
Palczewski K, Kiser PD. Shedding new light on the generation of the visual chromophore[J]. Proc Natl Acad Sci USA, 2020, 117(33): 19629-19638.
[34]
Rada JA, Hollaway LR, Lam W, et al. Identification of RALDH2 as a visually regulated retinoic acid synthesizing enzyme in the chick choroid[J]. Invest Ophthalmol Vis Sci, 2012, 53(3): 1649-1662.
[35]
李娇,李娟,梁见楠,等. 银屑病患者皮损间充质干细胞磷脂酶C-β4和视黄醇脱氢酶10表达水平的研究[J]. 临床皮肤科杂志201847(11):700-704.
[36]
Long Q, Ye J, Li Y, et al. C-reactive protein and complement components in patients with pathological myopia[J]. Optom Vis Sci, 2013, 90(5): 501-506.
[37]
Gao TT, Long Q, Yang X. Complement factors c1q, C3 and c5b-9 in the posterior sclera of guinea pigs with negative lens-defocused myopia[J]. Int J Ophthalmol, 2015, 8(4): 675-680.
[38]
Chen P, Lee TD, Fong HK. Interaction of 11-cis-retinol dehydrogenase with the chromophore of retinal g protein-coupled receptor opsin[J]. J Biol Chem, 2001, 276(24): 21098-21104.
[39]
Golczak M, Kiser PD, Lodowski DT, et al. Importance of membrane structural integrity for RPE65 retinoid isomerization activity[J]. J Biol Chem, 2010, 285(13): 9667-9682.
[40]
Morshedian A, Kaylor JJ, Ng SY, et al. Light-driven regeneration of cone visual pigments through a mechanism involving RGR opsin in müller glial cells[J]. Neuron, 2019, 102(6): 1172-1183.
[41]
Greenbaum D, Colangelo C, Williams K, et al. Comparing protein abundance and mRNA expression levels on a genomic scale[J]. Genome Biol, 2003, 4(9): 117.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J/OL]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 郭立珍, 范天群, 张欣凯, 蒋韵红, 金蓉, 刘冬云. 早产小于胎龄儿发生支气管肺发育不良的危险因素及预后分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 209-215.
[3] 王叶青, 李利彤, 李伟绪, 曹猛. 牙周炎和糖尿病视网膜病变的因果关系:一项双向两样本孟德尔随机化分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 160-168.
[4] 余玲玲, 彭倪, 刘小虎, 刘聪慧. 蟛蜞菊内酯上调miR-190表达抑制高糖诱导的人视网膜血管内皮细胞凋亡[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 339-345.
[5] 罗桂彬, 沈强, 张蓝月, 刘涵. 晚期糖化终末产物与糖尿病视网膜病变相关性的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 247-251.
[6] 赵晞淯, 李俊红, 王晓刚. 斜视患者眼外肌术后视网膜与脉络膜变化的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 227-232.
[7] 王子琪, 李萍, 蔡标, 杨秀敏. 雌激素在糖尿病性视网膜病变中作用机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 187-192.
[8] 连奕豪, 易加祎, 张青. 视网膜血管迂曲度与心血管疾病危险因素相关性的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(02): 119-124.
[9] 马张芳, 宋薇, 王亚星. 高度近视眼视网膜各分层厚度改变及其相关因素的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(01): 26-33.
[10] 董力, 李赫妍, 魏文斌. 人工智能在糖尿病视网膜病变中的应用进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(01): 57-61.
[11] 刘涵, 沈强, 张蓝月, 陈健. 糖尿病视网膜病变分子生物标志物的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(06): 376-380.
[12] 李新星, 方晏红, 陈会振, 张蓝月, 刘涵. 维生素D与眼病关系的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(06): 366-370.
[13] 黄婵妍, 张妍春, 郑嘉敏, 王鑫晨. 循环及眼生物液标志物在早期糖尿病视网膜病变筛查和风险分层管理中的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(05): 306-310.
[14] 刘涵, 方晏红, 张蓝月, 李新星. 血脂异常与糖尿病视网膜病变的相关性研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(05): 301-305.
[15] 邬秋俊, 向茜. 甘油三酯-葡萄糖指数与2型糖尿病微血管并发症相关性的研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(10): 1109-1112.
阅读次数
全文


摘要