切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2021, Vol. 11 ›› Issue (02) : 65 -69. doi: 10.3877/cma.j.issn.2095-2007.2021.02.001

所属专题: 青少年近视防控

述评

重视照明光源对眼球屈光发育的调节作用及其在近视眼防控中的应用前景
甄毅1,(), 黄海阔2, 汪东生1   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科学与视觉科学重点实验室 北京市眼科研究所 国家眼科诊断与治疗工程技术研究中心 眼科诊疗设备与材料教育部工程研究中心
    2. 100024 明目科技(北京)有限责任公司
  • 收稿日期:2021-01-18 出版日期:2021-04-28
  • 通信作者: 甄毅
  • 基金资助:
    北京市科技计划基金项目(Z201100005520042)

Pay attention to the adjustment effect of illumination light source on eyeball refractive development and its application prospects in the prevention and control of myopia

Yi Zhen1,(), Haikuo Huang2, Dongsheng Wang1   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing Institute of Ophthalmology, Engineering Research Center of Ministry of Education for Ophthalmology Medical Equipment and Materials, National Engineering Research Center for Ophthalmology, Beijing 100730, China
    2. MingMu Technology (Beijing) Co., Ltd, Beijing 100024, China
  • Received:2021-01-18 Published:2021-04-28
  • Corresponding author: Yi Zhen
引用本文:

甄毅, 黄海阔, 汪东生. 重视照明光源对眼球屈光发育的调节作用及其在近视眼防控中的应用前景[J]. 中华眼科医学杂志(电子版), 2021, 11(02): 65-69.

Yi Zhen, Haikuo Huang, Dongsheng Wang. Pay attention to the adjustment effect of illumination light source on eyeball refractive development and its application prospects in the prevention and control of myopia[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2021, 11(02): 65-69.

眼球屈光的发育离不开正常的光信号刺激,良好的照明光环境对屈光发育尤为重要。近年来,荧光灯与发光二极管(LED)等新型窄光谱照明光源逐渐替代白炽灯等宽光谱照明光源在日常学习与生活中的普及,巧合的是其普及时间与近视眼发生率升高的时间重叠。多年来,人们利用单色光的实验研究发现环境光线对眼的屈光发育具有调节作用。本文中笔者就照明光源对眼球屈光发育的调节作用进行了归纳,并分析得出调整照明光源的光谱特性可以改变近视眼进展的速度,以期为研究融于日常学习过程中的近视眼防控方法提供参考。

The development of eyeball refraction is inseparable from normal light signal stimulation, and a good lighting environment is particularly important for refractive development. New narrow-spectrum lighting sources such as fluorescent lamps and LED have gradually replaced incandescent lamps and other broad-spectrum lighting sources in daily study and life. Coincidentally, their popularization time overlaps with the time when the incidence of myopia increases. For many years, it has been found that ambient light can regulate the refractive development of the eye by using monochromatic light. The effect of light source on the adjustment of eyeball refractive development is summarized, analyzing that the adjusting the spectral characteristics of the light source can change the speed of myopia progression, hoping to provide a series of methods for prevention and control of myopia integrated in the daily learning process.

[1]
Yam JC, Tang SM, Kam KW, et al. High prevalence of myopia in children and their parents in Hong Kong Chinese Population: the Hong Kong Children Eye Study[J]. Acta Ophthalmol, 2020, 98(5): 427-529.
[2]
Li L, Zhong H, Li J, et al. Incidence of myopia and biometric characteristics of premyopic eyes among Chinese children and adolescents[J]. BMC ophthalmology, 2018, 18(1): 178-182.
[3]
Naidoo KS, Fricke TR, Frick KD, et al. Potential lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling[J]. Ophthalmology, 2019, 126(3): 338-346.
[4]
Luong TQ, Shu YH, Modjtahedi BS, et al. Racial and ethnic differences in myopia progression in a large, diverse cohort of pediatric patients[J]. Investigative ophthalmology & visual science, 2020, 61(13): 20-23.
[5]
Mutti DO, Mitchell GL, Moeschberger ML, et al. Parental myopia, near work, school achievement, and children's refractive error[J]. Invest Ophthalmol Vis Sci, 2002, 43(2): 3633-3640.
[6]
高伟艳,段晓娟,邢月华,等. 中卫市中小学校教室环境卫生与学生视力不良关系分析[J]. 宁夏医学杂志2019, 41(3): 239-241.
[7]
陶然,杨招庚,温勃,等. 教室灯光改造对四年级小学生的视力影响研究[J]. 中国儿童保健杂志2020216(6): 69-72.
[8]
蒋思彬,王政和,余红,等. 教室灯光改造对中小学生视力及视力不良的影响[J]. 照明工程学报201936(3): 56-59.
[9]
Pan CW, Wu RK, Hu L, et al. Types of lamp for homework and myopia among Chinese school-aged children[J]. Ophthalmic Epidemiology, 2018, 25(6): 1-7.
[10]
French AN, O'Donoghue L, Morgan IG, et al. Comparison of refraction and ocular biometry in European Caucasian children living in Northern Ireland and Sydney, Australia. Invest Ophthalmol Vis Sci, 2012, 53(7): 4021-31.
[11]
Guo Y, Liu LJ, Xu L, et al. Outdoor Activity and Myopia among Primary Students in Rural and Urban Regions of Beijing[J]. Ophthalmology, 2013, 120(2): 277-283.
[12]
Matynia A, Nguyen E, Sun X, et al. Peripheral sensory neurons expressing melanopsin respond to light[J]. Frontiers in Neural Circuits, 2016, 10: 21-22.
[13]
Li X, Spiegel D, Bao J, et al. The effect of blue light on axial length changes induced by monocular optical defocus[C]. 16th International Myopia Conference, 2017: 65.
[14]
Torii H, Kurihara T, Seko Y, et al. Violet light exposure can be a preventive strategy against myopia progression[J]. EBioMedicine, 2017, 15(3): 210-219.
[15]
Torii H, Ohnuma K, Kurihara T, et al. Violet light transmission is related to myopia progression in adult high myopia[J]. Scientific reports, 2017, 7(1): 1-8.
[16]
Bedford RE, Wyszecki G. Axial Chromatic Aberration of the Human Eye[J]. Journal of the Optical Society of America, 1957, 47(6): 564-566.
[17]
Smith EL, Li FH, Harwerth RS. Effects of optically induced blur on the refractive status of young monkeys[J]. Vision Research, 1994, 34(3): 293-301.
[18]
Wildsoet CF, Howland HC, Falconer S, et al. Chromatic aberration and accommodation: their role in emmetropization in the chick[J]. Vision Research, 1993, 33(12): 1593-1603.
[19]
Howlett MHC, McFadden SA. Spectacle lens compensation in the pigmented guinea pig[J]. Vision research, 2009, 49(2): 219-227.
[20]
Amedo AO, Norton TT. Visual guidance of recovery from lens induced myopia in tree shrews[J]. Ophthalmic and Physiological Optics, 2012, 32(2): 89-99.
[21]
Marcos S, Burns SA, Moreno-Barriusop E, et al. A new approach to the study of ocular chromatic aberrations[J]. Vision Research, 1999, 39(26): 4309-4323.
[22]
Yi-Shan Q, Ren-Yuan C, He JC, et al. Incidence of Myopia in High School Students with and without Red-Green Color Vision Deficiency[J]. Investigative Ophthalmology & Visual Science, 2009, 50(4): 1598-1605.
[23]
Rucker FJ. The role of luminance and chromatic cues in emmetropisation[J]. Ophthalmic and Physiological Optics, 2013, 33(3): 196-214.
[24]
Liu R, Qian YF, He JC, et al. Effects of different monochromatic lights on refractive development and eye growth in guinea pigs[J]. Experimental eye research, 2011, 92(6): 447-453.
[25]
Long Q, Chen D, Chu R. Illumination with monochromatic long-wavelength light promotes myopic shift and ocular elongation in newborn pigmented guinea pigs[J]. Cutaneous and ocular toxicology, 2009, 28(4): 176-180.
[26]
Liu R, Hu M, He JC, et al. The effects of monochromatic illumination on early eye development in rhesus monkeys[J]. Investigative ophthalmology & visual science, 2014, 55(3): 1901-1909.
[27]
Torii H, Kurihara T, Seko Y, et al. Violet light exposure can be a preventive strategy against myopia progression[J]. EBioMedicine, 2017, 15(6): 210-219.
[28]
Zou L, Zhu X, Liu R, et al. Effect of altered retinal cones/opsins on refractive development under monochromatic lights in guinea pigs[J]. Journal of Ophthalmology, 2018: 1-9.
[29]
Hung LF, Arumugam B, She Z, et al. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys[J]. Experimental eye research, 2018, 176(3): 147-160.
[30]
Foulds WS, Barathi VA, Luu CD. Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light[J]. Investigative ophthalmology & visual science, 2013, 54(13): 8004-8012.
[31]
Liu R, Qian YF, He JC, et al. Effects of different monochromatic lights on refractive development and eye growth in guinea pigs[J]. Experimental eye research, 2011, 92(6): 447-453.
[32]
Seidemann A, Schaeffel F. Effects of longitudinal chromatic aberration on accommodation and emmetropization[J]. Vision research, 2002, 42(21): 2409-2417.
[33]
Rucker FJ, Kruger PB. The role of short-wavelength sensitive cones and chromatic aberration in the response to stationary and step accommodation stimuli[J]. Vision Research, 2004, 44(2): 197-208.
[34]
Smith EL, Hung LF, Arumugam B, et al. Effects of long-wavelength lighting on refractive development in infant rhesus monkeys[J]. Investigative ophthalmology & visual science, 2015, 56(11): 6490-6500.
[35]
Gawne TJ, Ward AH, Norton TT. Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews[J]. Vision research, 2017, 140(3): 55-65.
[36]
Gawne TJ, Siegwart JT, Ward AH, et al. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews[J]. Experimental eye research, 2017, 155(3): 75-84.
[37]
Schaeffel F, Howland HC. Properties of the feedback loops controlling eye growth and refractive state in the chicken[J]. Vision research, 1991, 31(4): 717-734.
[38]
Hammond DS, Wildsoet CF. Compensation to positive as well as negative lenses can occur in chicks reared in bright UV lighting[J]. Vision Research, 2012, 67(6): 44-50.
[39]
Torii H, Kurihara T, Seko Y, et al. Violet light exposure can be a preventive strategy against myopia progression[J]. EBioMedicine, 2017, 15(3): 210-219.
[40]
Gawne TJ, Ward AH, Norton TT. Juvenile tree shrews do not maintain emmetropia in narrow-band blue light[J]. Optometry and vision science, 2018, 95(10): 911-916.
[41]
Cohen Y, Belkin M, Yehezkel O, et al. Dependency between light intensity and refractive development under light-dark cycles-ScienceDirect[J]. Experimental Eye Research, 2011, 92(1): 40-46.
[42]
Regan A, Arne O, Frank S. The Effect of ambient illuminance on the development of deprivation myopia in chicks[J]. Investigative Ophthalmology & Visual Science, 2009, 50(11): 5348-5354.
[43]
Chen PC, Woung LC, Yang CF. Modulation transfer function and critical flicker frequency in high-myopia patients[J]. Journal of the Formosan Medical Association, 2000, 99(1): 45-48.
[44]
Rucker F, Britton S, Spatcher M, et al. Blue light protects against temporal frequency sensitive refractive changes[J]. Investigative ophthalmology & visual science, 2015, 56(10): 6121-6131.
[45]
Rucker F, Britton S, Taylor C. Color and temporal frequency sensitive eye growth in chick[J]. Investigative ophthalmology & visual science, 2018, 59(15): 6003-6013.
[46]
Callahan TL, Petry HM. Psychophysical measurement of temporal modulation sensitivity in the tree shrew (Tupaia belangeri)[J]. Vision research, 2000, 40(4): 455-458.
[47]
Guyton DL, Greene PR, Scholz RT. Dark-rearing interference with emmetropization in the rhesus monkey[J]. Investigative ophthalmology & visual science, 1989, 30(4): 761-764.
[48]
Hung LF, Arumugam B, She Z, et al. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys[J]. Experimental eye research, 2018, 176(3): 147-160.
[49]
Nickla DL, Thai P, Trahan RZ, et al. Myopic defocus in the evening is more effective at inhibiting eye growth than defocus in the morning: effects on rhythms in axial length and choroid thickness in chicks[J]. Experimental eye research, 2017, 154(3): 104-115.
[50]
Wang F, Zhou J, Lu Y, et al. Effects of 530 nm green light on refractive status, melatonin, MT1 receptor, and melanopsin in the guinea pig[J]. Curr Eye Res, 2011, 36(2): 103-111.
[51]
Burfield HJ, Patel NB, Ostrin LA. Ocular biometric diurnal rhythms in emmetropic and myopic adults[J]. Investigative ophthalmology & visual science, 2018, 59(12): 5176-5187.
[52]
蔡建奇,高伟,郭娅,等. 健康照明的基础研究和标准研制的探讨[J]. 照明工程学报201728(6): 24-28.
[53]
林金填,曹小兵,陈磊,等. 基于全光谱LED的健康照明应用研究[J]. 中国照明电器201921(8): 19-24.
[54]
曹小兵,吴峰. 浅论读写作业台灯照明质量[J].中国照明电器201618(5): 33-37.
[55]
曹小兵,蔡纯,李建华. 探析深圳LED产业联盟标准[J].中国照明电器201545(6): 19-23.
[56]
Cao X, Zheng D. Intelligent LED lighting system and sensor technology[J]. 2014 11th China International Forum on Solid State Lighting, 2014:129-132.
[57]
汪晖. 智能照明控制技术发展现状与未来展望探讨[J]. 电子世界2018548(14): 81-83.
[1] 朱意然, 覃健. 拉曼光谱技术用于监测膝关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(02): 276-282.
[2] 宋聪颖, 陆远强. 新型冠状病毒感染防控新阶段公立医院运营面临的难题及思考[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 3-5.
[3] 姬晨妮, 王琳, 张付娥, 邢玉姗, 董士民. 北京2022年冬奥会及冬残奥会148例云顶滑雪公园场馆闭环内就医案例分析[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 33-36.
[4] 李振华, 解宝江, 易为, 李丽, 卫雅娴, 周明书, 伊诺. 82例孕产妇对新型冠状病毒肺炎疫情防控认知的心理干预及常态化疫情防控应对要点[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 173-179.
[5] 李小龙, 彭飞, 邢虹, 张朋飞, 徐泉, 赵静儒, 李占魁, 郭金珍, 白瑞苗. 局部脑氧饱和度和肠道血氧饱和度对新生儿坏死性小肠结肠炎早期预警及手术治疗时机的指导价值[J]. 中华普通外科学文献(电子版), 2023, 17(01): 45-49,68.
[6] 马俊永, 王毅州, 李锡锋, 吴雅丽, 张小峰. 浅谈腹腔镜肝切除术出血防控策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 495-498.
[7] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[8] 娜荷雅, 朱丹. 红光疗法在儿童近视眼防控中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 252-256.
[9] 任美琪, 李俊红, 冯张青. 间歇性外斜视新型热点问题的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 162-166.
[10] 赵艳, 朱丹. 低浓度阿托品在儿童近视眼防控中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 124-128.
[11] 张凯文, 刘含若. 眼健康与全身健康相互作用机制的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 119-123.
[12] 宋红欣, 孙璐, 王庆强. 近视性屈光参差少年儿童眼部屈光生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 88-93.
[13] 郝壮, 马济远, 何梦梅, 李兴育, 陆新婷, 武静, 周健. 迟发性囊袋阻滞综合征临床特征、治疗方法及其疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 70-75.
[14] 曹宇, 苗泽群, 王凯, 王乐今. 关注交联技术的发展及巩膜交联技术在控制近视发展中的潜在应用价值[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 65-69.
[15] 宗晨曦, 肖林, 宋红欣. 人工智能视力筛查在近视眼防控中的应用研究与展望[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 60-64.
阅读次数
全文


摘要