[1] |
Yam JC, Tang SM, Kam KW, et al. High prevalence of myopia in children and their parents in Hong Kong Chinese Population: the Hong Kong Children Eye Study[J]. Acta Ophthalmol, 2020, 98(5): 427-529.
|
[2] |
Li L, Zhong H, Li J, et al. Incidence of myopia and biometric characteristics of premyopic eyes among Chinese children and adolescents[J]. BMC ophthalmology, 2018, 18(1): 178-182.
|
[3] |
Naidoo KS, Fricke TR, Frick KD, et al. Potential lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling[J]. Ophthalmology, 2019, 126(3): 338-346.
|
[4] |
Luong TQ, Shu YH, Modjtahedi BS, et al. Racial and ethnic differences in myopia progression in a large, diverse cohort of pediatric patients[J]. Investigative ophthalmology & visual science, 2020, 61(13): 20-23.
|
[5] |
Mutti DO, Mitchell GL, Moeschberger ML, et al. Parental myopia, near work, school achievement, and children's refractive error[J]. Invest Ophthalmol Vis Sci, 2002, 43(2): 3633-3640.
|
[6] |
高伟艳,段晓娟,邢月华,等. 中卫市中小学校教室环境卫生与学生视力不良关系分析[J]. 宁夏医学杂志,2019, 41(3): 239-241.
|
[7] |
陶然,杨招庚,温勃,等. 教室灯光改造对四年级小学生的视力影响研究[J]. 中国儿童保健杂志,2020,216(6): 69-72.
|
[8] |
蒋思彬,王政和,余红,等. 教室灯光改造对中小学生视力及视力不良的影响[J]. 照明工程学报,2019,36(3): 56-59.
|
[9] |
Pan CW, Wu RK, Hu L, et al. Types of lamp for homework and myopia among Chinese school-aged children[J]. Ophthalmic Epidemiology, 2018, 25(6): 1-7.
|
[10] |
French AN, O'Donoghue L, Morgan IG, et al. Comparison of refraction and ocular biometry in European Caucasian children living in Northern Ireland and Sydney, Australia. Invest Ophthalmol Vis Sci, 2012, 53(7): 4021-31.
|
[11] |
Guo Y, Liu LJ, Xu L, et al. Outdoor Activity and Myopia among Primary Students in Rural and Urban Regions of Beijing[J]. Ophthalmology, 2013, 120(2): 277-283.
|
[12] |
Matynia A, Nguyen E, Sun X, et al. Peripheral sensory neurons expressing melanopsin respond to light[J]. Frontiers in Neural Circuits, 2016, 10: 21-22.
|
[13] |
Li X, Spiegel D, Bao J, et al. The effect of blue light on axial length changes induced by monocular optical defocus[C]. 16th International Myopia Conference, 2017: 65.
|
[14] |
Torii H, Kurihara T, Seko Y, et al. Violet light exposure can be a preventive strategy against myopia progression[J]. EBioMedicine, 2017, 15(3): 210-219.
|
[15] |
Torii H, Ohnuma K, Kurihara T, et al. Violet light transmission is related to myopia progression in adult high myopia[J]. Scientific reports, 2017, 7(1): 1-8.
|
[16] |
Bedford RE, Wyszecki G. Axial Chromatic Aberration of the Human Eye[J]. Journal of the Optical Society of America, 1957, 47(6): 564-566.
|
[17] |
Smith EL, Li FH, Harwerth RS. Effects of optically induced blur on the refractive status of young monkeys[J]. Vision Research, 1994, 34(3): 293-301.
|
[18] |
Wildsoet CF, Howland HC, Falconer S, et al. Chromatic aberration and accommodation: their role in emmetropization in the chick[J]. Vision Research, 1993, 33(12): 1593-1603.
|
[19] |
Howlett MHC, McFadden SA. Spectacle lens compensation in the pigmented guinea pig[J]. Vision research, 2009, 49(2): 219-227.
|
[20] |
Amedo AO, Norton TT. Visual guidance of recovery from lens induced myopia in tree shrews[J]. Ophthalmic and Physiological Optics, 2012, 32(2): 89-99.
|
[21] |
Marcos S, Burns SA, Moreno-Barriusop E, et al. A new approach to the study of ocular chromatic aberrations[J]. Vision Research, 1999, 39(26): 4309-4323.
|
[22] |
Yi-Shan Q, Ren-Yuan C, He JC, et al. Incidence of Myopia in High School Students with and without Red-Green Color Vision Deficiency[J]. Investigative Ophthalmology & Visual Science, 2009, 50(4): 1598-1605.
|
[23] |
Rucker FJ. The role of luminance and chromatic cues in emmetropisation[J]. Ophthalmic and Physiological Optics, 2013, 33(3): 196-214.
|
[24] |
Liu R, Qian YF, He JC, et al. Effects of different monochromatic lights on refractive development and eye growth in guinea pigs[J]. Experimental eye research, 2011, 92(6): 447-453.
|
[25] |
Long Q, Chen D, Chu R. Illumination with monochromatic long-wavelength light promotes myopic shift and ocular elongation in newborn pigmented guinea pigs[J]. Cutaneous and ocular toxicology, 2009, 28(4): 176-180.
|
[26] |
Liu R, Hu M, He JC, et al. The effects of monochromatic illumination on early eye development in rhesus monkeys[J]. Investigative ophthalmology & visual science, 2014, 55(3): 1901-1909.
|
[27] |
Torii H, Kurihara T, Seko Y, et al. Violet light exposure can be a preventive strategy against myopia progression[J]. EBioMedicine, 2017, 15(6): 210-219.
|
[28] |
Zou L, Zhu X, Liu R, et al. Effect of altered retinal cones/opsins on refractive development under monochromatic lights in guinea pigs[J]. Journal of Ophthalmology, 2018: 1-9.
|
[29] |
Hung LF, Arumugam B, She Z, et al. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys[J]. Experimental eye research, 2018, 176(3): 147-160.
|
[30] |
Foulds WS, Barathi VA, Luu CD. Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light[J]. Investigative ophthalmology & visual science, 2013, 54(13): 8004-8012.
|
[31] |
Liu R, Qian YF, He JC, et al. Effects of different monochromatic lights on refractive development and eye growth in guinea pigs[J]. Experimental eye research, 2011, 92(6): 447-453.
|
[32] |
Seidemann A, Schaeffel F. Effects of longitudinal chromatic aberration on accommodation and emmetropization[J]. Vision research, 2002, 42(21): 2409-2417.
|
[33] |
Rucker FJ, Kruger PB. The role of short-wavelength sensitive cones and chromatic aberration in the response to stationary and step accommodation stimuli[J]. Vision Research, 2004, 44(2): 197-208.
|
[34] |
Smith EL, Hung LF, Arumugam B, et al. Effects of long-wavelength lighting on refractive development in infant rhesus monkeys[J]. Investigative ophthalmology & visual science, 2015, 56(11): 6490-6500.
|
[35] |
Gawne TJ, Ward AH, Norton TT. Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews[J]. Vision research, 2017, 140(3): 55-65.
|
[36] |
Gawne TJ, Siegwart JT, Ward AH, et al. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews[J]. Experimental eye research, 2017, 155(3): 75-84.
|
[37] |
Schaeffel F, Howland HC. Properties of the feedback loops controlling eye growth and refractive state in the chicken[J]. Vision research, 1991, 31(4): 717-734.
|
[38] |
Hammond DS, Wildsoet CF. Compensation to positive as well as negative lenses can occur in chicks reared in bright UV lighting[J]. Vision Research, 2012, 67(6): 44-50.
|
[39] |
Torii H, Kurihara T, Seko Y, et al. Violet light exposure can be a preventive strategy against myopia progression[J]. EBioMedicine, 2017, 15(3): 210-219.
|
[40] |
Gawne TJ, Ward AH, Norton TT. Juvenile tree shrews do not maintain emmetropia in narrow-band blue light[J]. Optometry and vision science, 2018, 95(10): 911-916.
|
[41] |
Cohen Y, Belkin M, Yehezkel O, et al. Dependency between light intensity and refractive development under light-dark cycles-ScienceDirect[J]. Experimental Eye Research, 2011, 92(1): 40-46.
|
[42] |
Regan A, Arne O, Frank S. The Effect of ambient illuminance on the development of deprivation myopia in chicks[J]. Investigative Ophthalmology & Visual Science, 2009, 50(11): 5348-5354.
|
[43] |
Chen PC, Woung LC, Yang CF. Modulation transfer function and critical flicker frequency in high-myopia patients[J]. Journal of the Formosan Medical Association, 2000, 99(1): 45-48.
|
[44] |
Rucker F, Britton S, Spatcher M, et al. Blue light protects against temporal frequency sensitive refractive changes[J]. Investigative ophthalmology & visual science, 2015, 56(10): 6121-6131.
|
[45] |
Rucker F, Britton S, Taylor C. Color and temporal frequency sensitive eye growth in chick[J]. Investigative ophthalmology & visual science, 2018, 59(15): 6003-6013.
|
[46] |
Callahan TL, Petry HM. Psychophysical measurement of temporal modulation sensitivity in the tree shrew (Tupaia belangeri)[J]. Vision research, 2000, 40(4): 455-458.
|
[47] |
Guyton DL, Greene PR, Scholz RT. Dark-rearing interference with emmetropization in the rhesus monkey[J]. Investigative ophthalmology & visual science, 1989, 30(4): 761-764.
|
[48] |
Hung LF, Arumugam B, She Z, et al. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys[J]. Experimental eye research, 2018, 176(3): 147-160.
|
[49] |
Nickla DL, Thai P, Trahan RZ, et al. Myopic defocus in the evening is more effective at inhibiting eye growth than defocus in the morning: effects on rhythms in axial length and choroid thickness in chicks[J]. Experimental eye research, 2017, 154(3): 104-115.
|
[50] |
Wang F, Zhou J, Lu Y, et al. Effects of 530 nm green light on refractive status, melatonin, MT1 receptor, and melanopsin in the guinea pig[J]. Curr Eye Res, 2011, 36(2): 103-111.
|
[51] |
Burfield HJ, Patel NB, Ostrin LA. Ocular biometric diurnal rhythms in emmetropic and myopic adults[J]. Investigative ophthalmology & visual science, 2018, 59(12): 5176-5187.
|
[52] |
蔡建奇,高伟,郭娅,等. 健康照明的基础研究和标准研制的探讨[J]. 照明工程学报,2017,28(6): 24-28.
|
[53] |
林金填,曹小兵,陈磊,等. 基于全光谱LED的健康照明应用研究[J]. 中国照明电器,2019,21(8): 19-24.
|
[54] |
曹小兵,吴峰. 浅论读写作业台灯照明质量[J].中国照明电器,2016,18(5): 33-37.
|
[55] |
曹小兵,蔡纯,李建华. 探析深圳LED产业联盟标准[J].中国照明电器,2015,45(6): 19-23.
|
[56] |
Cao X, Zheng D. Intelligent LED lighting system and sensor technology[J]. 2014 11th China International Forum on Solid State Lighting, 2014:129-132.
|
[57] |
汪晖. 智能照明控制技术发展现状与未来展望探讨[J]. 电子世界,2018,548(14): 81-83.
|