切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (03) : 187 -192. doi: 10.3877/cma.j.issn.2095-2007.2019.03.011

综述

光学相干断层扫描血管成像在糖尿病患者早期黄斑区视网膜微循环评估中的应用
李昕格1, 丁旭晨1, 刘国丹1,()   
  1. 1. 150001 哈尔滨医科大学附属第四医院眼科
  • 收稿日期:2019-01-26 出版日期:2019-06-28
  • 通信作者: 刘国丹
  • 基金资助:
    黑龙江省青年科学基金项目(QC2011C119); 哈尔滨医科大学青年创新(2017LCZX100)

Application of optical coherence tomography angiography in evaluation of the early macular retinal microcirculation in diabetics

Xinge Li1, Xuchen Ding1, Guodan Liu1,()   

  1. 1. Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
  • Received:2019-01-26 Published:2019-06-28
  • Corresponding author: Guodan Liu
引用本文:

李昕格, 丁旭晨, 刘国丹. 光学相干断层扫描血管成像在糖尿病患者早期黄斑区视网膜微循环评估中的应用[J]. 中华眼科医学杂志(电子版), 2019, 09(03): 187-192.

Xinge Li, Xuchen Ding, Guodan Liu. Application of optical coherence tomography angiography in evaluation of the early macular retinal microcirculation in diabetics[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(03): 187-192.

糖尿病视网膜病变是由视网膜微血管损伤引起的一系列病变,也是致盲的主要原因。胰岛素代谢异常使糖尿病患者眼部组织、神经和血管微循环产生改变,导致视功能发生不同程度的损伤,患者临床表现为出血斑点、动脉瘤、视网膜内微血管异常和黄斑水肿等。目前,临床上对糖尿病患者早期黄斑区视网膜微循环检查以荧光素眼底血管造影为主,并将其视为"金标准",但是该检查方法具有明显的创伤性,且耗时相对较长,影响患者的依从性和耐受性。光学相干断层扫描血管成像是一种新型的、无创的血管成像技术,但目前在糖尿病患者早期黄斑区视网膜微循环评估中的应用研究较少。本文中笔者分析早期黄斑区视网膜微循环对糖尿病患者视网膜的影响,并对光学相干断层扫描血管成像在糖尿病患者早期黄斑区视网膜微循环评估中的应用进展进行综述。

Diabetic retinopathy is a series of lesions caused by microvascular damage of the retina, which is also the main cause of blindness in most patients. Abnormal insulin metabolism changes the ocular tissue, nerve and vascular microcirculation in diabetics, resulting in different degrees of visual impairment. The clinical manifestations of diabetics are bleeding spots, aneurysms, intraretinal microvascular abnormalities, and macular edema, etc. At present, fluorescein fundus angiography is the main clinical examination for the early macular retinal microcirculation in diabetics, which is regarded as "gold standard" . However, it is obviously traumatic and relatively time-consuming, leading to the poor compliance and poor tolerance for patients. Optical coherence tomography angiography is a novel, non-invasive angiography technique, but has few applications in the early detection of macular retinal microcirculation in diabetics. In this paper, the effect of early macular retinal microcirculation on the retina of diabetics was analyzed, and the application progress of optical coherence tomography angiography in the evaluation of early macular retinal microcirculation in diabetics was reviewed.

图1 视网膜黄斑区血流密度图 图A示分层的光学相干断层扫描血管成像;图B示结构光学相干断层扫描分层图像;图C示血流密度与视网膜厚度测量表;图D示血流断层图,水平断层扫描并用红色标记探测到的血流;图E示水平断层扫描图;图F示Angio Analytics血流密度图,血流低密度区为冷色调,高密度区为暖色调
[49]
Roisman L, Zhang Q, Wang RK, et al. Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration[J]. Ophthalmology, 2016, 123(6): 1309-1319.
[50]
Kuehlewein L, Bansal M, Lenis TL, et al. Optical coherence tomography angiography of type Ⅰ neovascularization in age-related macular degeneration[J]. Am J Ophthalmol, 2015, 160(4): 739-748.
[51]
Kim JY, Kwon OW, Oh HS, et al. Optical coherence tomography angiography in patients with polypoidal choroidal vasculopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(8): 1505-1510.
[52]
Rispoli M, Savastano MC, Lumbroso B, et al. Capillary network anomalies in branch retinal vein occlusion on optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2332-2338.
[53]
Quaranta-El Maftouhi M, El Maftouhi A, Eandi CM. Chronic central serous chorioretinopathy imaged by optical coherence tomographic angiography[J]. Am J Ophthalmol, 2015, 160(3): 581-587.
[54]
Chan SY, Wang Q, Wei WB, et al. Optical coherence tomographic angiography in central serous chorioretinopathy[J]. Retina, 2016, 36(11): 2051-2058.
[55]
de Carlo TE, Bonini Filho MA, Chin AT, et al. Spectral-domain optical coherence tomography angiography of choroidal neovascularization[J]. Ophthalmology, 2015, 122(6): 1228-1238.
[56]
Bonini-Filho MA, de Carlo TE, Ferrara D, et al. Association of choroidal neovascularization and central serous chorioretinopathy with optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(8): 899-906.
[57]
El Ameen A, Cohen SY, Semoun O, et al. Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2212-2218.
[58]
Kuehlewein L, Sadda SR, Sarraf D. OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy[J]. Eye (Lond), 2015, 29(7): 932-935.
[59]
Wang M, Zhou Y, Gao SS, et al. Evaluating polypoidal choroidal vasculopathy with optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 526-532.
[60]
Suzuki N, Hirano Y, Yoshida M, et al. Microvascular abnormalities on optical coherence tomography angiography in macular edema associated with branch retinal vein occlusion[J]. Am J Ophthalmol, 2016, 161: 126-132.
[61]
王敏. OCT血管成像和en face OCT图谱[M]. 上海:复旦大学出版社,2015:185-203.
[62]
Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study[J]. Am J Ophthalmol, 2015, 160(1): 35-44.
[63]
刘青,艾明. 光学相干断层扫描血管成像(OCTA)和荧光素血管造影(FFA)对比观察增生型糖尿病视网膜病变(PDR)[J]. 眼科新进展201737(1):52-55.
[64]
Kim AY, Chu Z, Shahidzadeh A, et al. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 362-370.
[65]
Matsunaga DR, Yi JJ, De Koo LO, et al. Optical coherence tomography angiography of diabetic retinopathy in human subjects[J]. Ophthalmic Surg Lasers Imaging Retina, 2015, 46(8): 796-805.
[66]
Andreanos K, Rotsos T, Kymionis G, et al. Optical Coherence Tomography Angiography of Foveal Neovascularization in Diabetic Retinopathy[J]. Case Rep Ophthalmol, 2018, 9(1): 87-91.
[67]
曾永,刘洋,樊映川. 光学相干断层扫描技术在脉络膜视网膜病变中的应用新进展[J]. 实用医院临床杂志201613(3):125-127.
[68]
Freiberg FJ, Pfau M, Wons J, et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(6): 1051-1058.
[69]
Takase N, Nozaki M, Kato A, et al. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2377-2383.
[70]
Di G, Weihong Y, Xiao Z, et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(5): 873-879.
[71]
李慧,陈沁,喻晓兵,等. 糖尿病视网膜病变黄斑区血流密度和黄斑中心凹无血管区面积的变化[J]. 中华糖尿病杂志20179(7):435-439.
[72]
邱翎,胡赛静,孔丽萍. 糖尿病性黄斑水肿的光学相干断层扫描与荧光血管造影图像的对比分析[J]. 眼视光学杂志20068(5):290-292.
[73]
Varma R, Bressler NM, Doan QV, et al. Prevalence of and risk factors for diabetic macular edema in the United States[J]. JAMA Ophthalmol, 2014, 132(11): 1334-1340.
[74]
Kempen JH, O′Colmain BJ, Leske MC, et al. The prevalence of diabetic retinopathy among adults in the United States[J]. Arch Ophthalmol, 2004, 122(4): 552-563.
[75]
Hwang TS, Gao SS, Liu L, et al. Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy[J]. JAMA Ophthalmol, 2016, 134(4): 367-373.
[76]
Mastropasqua R, Toto L, Mastropasqua A, et al. Foveal avascular zone area and parafoveal vessel density measurements in different stages of diabetic retinopathy by optical coherence tomography angiography[J]. Int J Ophthalmol, 2017, 10(10): 1545-1551.
[77]
Carnevali A, Sacconi R, Corbelli E, et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy[J]. Acta Diabetol, 2017, 54(7): 695-702.
[78]
熊晓清,李万根. 2型糖尿病肾病与糖尿病视网膜病变的相关性与平行性研究[J]. 临床医学工程201017(9):34-35.
[79]
郑丹,庞东渤. 应用光学相干断层扫描血管成像(OCTA)评估糖尿病患者早期黄斑区视网膜微循环[J]. 眼科新进展201838(6):548-552.
[80]
Xu HZ, Le YZ. Significance of outer blood-retina barrier breakdown in diabetes and ischemia[J]. Invest Opthalmol Vis Sci, 2011, 52(5): 2160-2164.
[1]
王健,陈松,何广辉,等. 无明显糖尿病视网膜病变的2型糖尿病患者黄斑区微血管改变的光相干断层扫描血管成像观察[J]. 中华眼底病杂志201733(1):15-18.
[2]
许欢,孔祥梅. 原发性开角型青光眼黄斑区视网膜微循环和结构损伤的研究[J]. 中华眼科杂志201753(2):98-103.
[3]
Park HS, Yun HM, Jung IM, et al. Role of laser Doppler for the evaluation of pedal microcirculatory function in diabetic neuropathy patients[J]. Microcirculation, 2016, 23(1): 44-52.
[4]
焦亚,付碧波,叶波,等. 视网膜脱离复位术后黄斑区血流密度:基于光学相干断层扫描血管成像(OCTA)的观察[J]. 眼科新进展201838(4):373-377.
[5]
马红霞,刘静,刘光辉. 复方血栓通胶囊对非增殖性糖尿病视网膜病变患者视网膜微循环的影响[J]. 中华中医药杂志201631(4):1490-1493.
[6]
张承芬. 眼底病学[M]. 2版. 北京:人民卫生出版社,2010:128-129.
[7]
李科军,赵智华,赵晓彬,等. 脉络膜微循环障碍在糖尿病视网膜病变中的作用[J]. 山东医药201656(14):44-46.
[8]
Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration[J]. Ophthalmology, 2014, 121(7): 1435-1444.
[9]
Ang M, Sim DA, Keane PA, et al. Optical coherence tomography angiography for anterior segment vasculature imaging[J]. Ophthalmology, 2015, 122(9): 1740-1747.
[10]
Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(1): 45-50.
[11]
Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma[J]. Ophthalmology, 2014, 121(7): 1322-1332.
[12]
Zhang A, Zhang Q, Chen CL, et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. J Biomed Opt, 2015, 20(10): 100901.
[13]
吕湘云,艾明. 光学相干断层扫描血管成像(OCTA)在黄斑疾病中的应用进展[J]. 眼科新进展201939(1):94-97.
[14]
Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Opt Express, 2012, 20(4): 4710-4725.
[15]
Tokayer J, Jia Y, Dhalla AH, et al. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Biomed Opt Express, 2013, 4(10): 1909-1924.
[16]
Ang M, Cai Y, Shahipasand S, et al. En face optical coherence tomography angiography for corneal neovascularisation[J]. Br J Ophthalmol, 2016, 100(5): 616-621.
[17]
Zou C, Jiao Y, Li X, et al. Differences between healthy adults and patients with type 2 diabetes mellitus in reactivity of toe microcirculation by ultrasound combined with a warm bath test[J]. Medicine (Baltimore), 2017, 96(22): e7035.
[18]
仲妍,车慧欣. 光学相干断层扫描血管成像(OCTA)在原发性青光眼患者中的检测价值[J]. 眼科新进展201838(4):352-356.
[19]
苏钰,陈长征,易佐慧子,等. 视网膜静脉阻塞患眼光相干断层扫描血管成像观察[J]. 中华眼底病杂志201632(4):357-361.
[20]
Jumar A, Ott C, Kistner I, et al. Early signs of end-organ damage in retinal arterioles in patients with type 2 diabetes compared to hypertensive patients[J]. Microcirculation, 2016, 23(6): 447-455.
[21]
高杰,张雅,夏联恒,等. 激光多普勒血流仪评估电针夹脊穴对糖尿病足病微循环的影响[J]. 中国老年学杂志201636(9):2097-2099.
[22]
杨景元. 光相干断层扫描血管成像在眼底疾病诊断研究中的应用[J]. 中华实验眼科杂志201735(10):944-948.
[23]
曾苗,陈晓,宋艳萍,等. 视网膜中央静脉阻塞患眼光相干断层扫描血管成像与荧光素眼底血管造影检查结果对比分析[J]. 中华眼底病杂志201632(4):362-366.
[24]
黎晓新,石璇. 认识光相干断层扫描血管成像技术特色,提升光相干断层扫描血管成像技术临床应用水平[J]. 中华眼底病杂志201733(1):3-6.
[25]
巩迪. OCT血管成像技术在观察正常人及糖尿病患者的黄斑拱环大小及黄斑区血流密度方面的应用[D]. 北京:北京协和医学院中国医学科学院,2016.
[26]
Munisamy S, Daud KM, Mokhtar SS, et al. Effects of 1α-calcidol (alfacalcidol) on microvascular endothelial function, arterial stiffness, and blood pressure in type Ⅱ diabetic nephropathy patients[J]. Microcirculation, 2016, 23(1): 53-61.
[27]
王文玲,关艳玲,户秀慧. 中心性浆液性脉络膜视网膜病变患者脉络膜毛细血管扩张和中心凹下脉络膜厚度关系的研究[J]. 眼科新进展201737(5):466-468.
[28]
杨沫. 光学相干断层扫描血管成像在眼科的应用[J]. 中华实验眼科杂志201735(5):469-473.
[29]
刘明明,李爱玲,修瑞娟. 糖尿病微血管内皮细胞功能受损机制研究进展[J]. 中国糖尿病杂志20168(7):439-442.
[30]
Dremin VV, Zherebtsov EA, Sidorov VV, et al. Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus[J]. J Biomed Opt, 2017, 22(8): 1-10.
[31]
赵丽,李明星,陈园园,等. 超声造影评价糖尿病肾病肾功能变化的临床研究[J]. 中国临床医学影像杂志201627(10):732-735.
[32]
段媛媛,郭振丰,李雪连. 丹参酮ⅡA治疗心血管疾病研究机制新进展[J]. 中国临床药理学杂志201632(19):1817-1820.
[33]
向湘,马红婕,唐仕波. OCTA在DR患者黄斑血流密度观察中的应用[J]. 国际眼科杂志201717(7):1344-1347.
[34]
Lu Y, Simonett JM, Wang J, et al. Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2212-2221.
[35]
王敏,周瑶. 正确认识OCT血管成像技术的临床应用价值[J]. 中华实验眼科杂志201634(12):1057-1060.
[36]
朱佩文,邹雪香,刘康成,等. 光学相干断层扫描血管造影(OCTA)在角膜厚度测量中的临床研究[J]. 眼科新进展201737(8):732-735.
[37]
杨楠,马英慧,崔秀成,等. 原发性慢性闭角型青光眼黄斑区内层和外层视网膜厚度变化[J]. 眼科新进展201838(3):277-280.
[38]
Al-Sheikh M, Akil H, Pfau M, et al. Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2016, 57(8): 3907-3913.
[39]
戴馨,武海军. 早期糖尿病视网膜病变黄斑区视神经节细胞复合体厚度的临床研究[J]. 临床眼科杂志201826(3):197-200.
[40]
沈沛阳,陈王灵,冼文光,等. 采用频域OCT观察糖尿病患者早期黄斑区视网膜结构的变化[J]. 眼科新进展201737(1):42-45.
[41]
Yazgan S, Arpaci D, Celik HU, et al. Macular choroidal thickness may be the earliest determiner to detect the onset of diabetic retinopathy in patients with prediabetes: a prospective and comparative study[J]. Curr Eye Res, 2017, 42(7): 1039-1047.
[42]
吴宇霏,谭凡,郑玥,等. 2型糖尿病患者早期黄斑区视网膜亚层及脉络膜的光学相干断层扫描成像特征[J]. 中华眼视光学与视觉科学杂志201820(11):663-668.
[43]
孙冬敏,夏丹,梁鹏. 全视网膜激光光凝治疗增生型糖尿病视网膜病变患者的疗效分析[J]. 中国医师杂志201820(7):1056-1059.
[44]
Heitmar R, Nicholl P, Lee B, et al. The relationship of systemic markers of haemostasis with retinal blood vessel responses in cardiovascular disease and/or diabetes[J]. Br J Biomed Sci, 2018, 75(3): 116-121.
[45]
谢英,杨晓伟,张薇,等. OCT对糖尿病视网膜病变光感受器细胞层的检测[J]. 国际眼科杂志201717(12):2345-2347.
[46]
魏长征,李莉. 羟苯磺酸钙联合高压氧对老年非增生性糖尿病视网膜病变患者疗效及微循环状态的影响[J]. 药物流行病学杂志201827(11):721-724.
[47]
李瑾,赵伟,闫配. 糖尿病性黄斑水肿抗VEGF治疗对视网膜毛细血管影响的研究进展[J]. 国际眼科杂志201919(1):66-68.
[48]
Fukami M, Iwase T, Yamamoto K, et al. Changes in retinal microcirculation after intravitreal ranibizumab injection in eyes with macular edema secondary to branch retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 1246-1255.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 罗红, 袁昌亮, 陈岚. MiR-3202对高糖诱导的人视网膜血管内皮细胞损伤的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(03): 155-160.
[3] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[4] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[5] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[6] 李茹月, 李明华, 张凯文, 张悦, 牟大鹏, 王宁利, 刘含若. 早期筛查老年人群糖尿病视网膜病变的卫生经济学分析[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 216-221.
[7] 胡晨曦, 唐楚皓, 韩亮, 段虹宇, 杨婷婷, 刘一昀, 马佰凯, 赵琳, 齐虹. 光学相干断层扫描血管成像对视网膜血管形态学评估的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 47-51.
[8] 段如月, 张天资, 晓琴, 韩永青, 佟玉兰. 光学相干断层扫描血管成像技术在康柏西普对湿性年龄相关性黄斑变性治疗效果评价中的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 140-145.
[9] 李茹月, 刘含若. 卫生经济学评价常见致盲眼病筛查的进展[J]. 中华眼科医学杂志(电子版), 2021, 11(02): 94-98.
[10] 丁云鹤, 严棽棽, 王璐, 陈燕云, 宋婷婷, 张璐, 李哲清, 杨智, 田蓓. 增殖性糖尿病视网膜病变虹膜新生血管的多模态临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 8-13.
[11] 霍剑, 段俊国, 朱柯宇, 艾家玲, 隋嘉庆. 芪明颗粒对非增生期糖尿病视网膜病变患者视网膜微循环状态影响的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(06): 333-338.
[12] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
[13] 冉启玉, 杜鹏宇, 孔蕾, 孙冰. 神经酰胺与糖尿病及其并发症关系研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 158-162.
[14] 杨莲, 罗争, 龚娇. 合并阻塞性睡眠呼吸暂停低通气综合征对老年人2型糖尿病视网膜病变的影响[J]. 中华老年病研究电子杂志, 2022, 09(03): 33-36.
[15] 李伟, 王青. 延续性护理干预对老年2型糖尿病视网膜病变患者血糖和视力水平的控制效果[J]. 中华老年病研究电子杂志, 2021, 08(03): 48-51.
阅读次数
全文


摘要