切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2024, Vol. 14 ›› Issue (03) : 182 -186. doi: 10.3877/cma.j.issn.2095-2007.2024.03.010

综述

眼表重建技术的研究进展
刘涵1, 张蓝月1, 沈强1,()   
  1. 1. 402260 重庆大学附属江津医院眼科
  • 收稿日期:2024-06-05 出版日期:2024-06-28
  • 通信作者: 沈强
  • 基金资助:
    重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX1061,CSTB2023NSCQ-MSX0639); 重庆市江津区科学技术局项目(Y2022017,Y2023016); 2023年重庆市公共卫生重点专科(学科)建设项目

Research progress in ocular surface reconstruction

Han Liu1, Lanyue Zhang1, Qiang Shen1,()   

  1. 1. Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing 402260, China
  • Received:2024-06-05 Published:2024-06-28
  • Corresponding author: Qiang Shen
引用本文:

刘涵, 张蓝月, 沈强. 眼表重建技术的研究进展[J]. 中华眼科医学杂志(电子版), 2024, 14(03): 182-186.

Han Liu, Lanyue Zhang, Qiang Shen. Research progress in ocular surface reconstruction[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(03): 182-186.

眼表是一个复杂的结构,以稳态机制共同维持角膜的完整性;当眼表因疾病而改变时,其稳态就会失衡,导致不适感、角膜混浊及视力下降。传统的眼表疾病治疗方法主要包括滴眼液或手术移植,眼表重建疗法则是通过刺激眼表细胞增殖、维持眼表稳态及恢复眼表功能修复受损眼表。因此,促进角膜组织再生和改善泪膜稳定性对眼表疾病治疗具有重要价值,且较传统方法更有优势,具有一劳永逸的效果。基于此,本文中笔者就角膜缘干细胞缺乏、神经营养性角膜病、干眼及翼状胬肉等常见眼表疾病的眼表重建技术进展进行综述。

The ocular surface is a complex structure that maintains the integrity of the cornea through a homeostatic mechanism. When the ocular surface changes due to disease, its homeostasis is lost, leading to discomfort, corneal opacity, and visual impairment. The traditional treatment methods for ocular surface diseases mainly include eye drops or transplantation surgery, while ocular surface reconstruction therapy repairs damaged ocular surfaces by stimulating the proliferation of ocular surface cells, maintaining ocular surface homeostasis, and restoring ocular surface function. It has been demonstrated that promoting corneal tissue regeneration and improving tear film stability to restore damaged ocular surfaces can improve the quality of life of patients with ocular surface, which has long-term advantages over traditional methods in treating ocular surface diseases. The new progress in ocular surface reconstruction methods based on common ocular surface diseases such as limbal stem cell deficiency, neurotrophic keratopathy, dry eye disease, and pterygium were reviewed in this paper.

[1]
Parikh AO, Conger JR, Li J, et al. A review of current uses of amniotic membrane transplantation in ophthalmic plastic and reconstructive surgery[J]. Ophthalmic Plast Reconstr Surg, 2024, 40(2): 134-149.
[2]
Kalirajan C, Dukle A, Nathanael AJ, et al. A Critical review on polymeric biomaterials for biomedical applications[J]. Polymers (Basel), 2021, 13(17): 3015.
[3]
Amador C, Shah R, Ghiam S, et al. Gene therapy in the anterior eye segment[J]. Curr Gene Ther. 2022, 22(2): 104-131.
[4]
Tonti E, Manco GA, Spadea L, et al. Focus on limbal stem cell deficiency and limbal cell transplantation[J]. World J Transplant, 2023, 13(6): 321-330.
[5]
Kate A, Basu S. A review of the diagnosis and treatment of limbal stem cell deficiency[J]. Front Med, 2022, 9: 836009.
[6]
Atalay E, Altuğ B, Çalᶊkan ME, et al. Animal models for limbal stem cell deficiency: a critical narrative literature review [J]. Ophthalmol Ther, 2024, 13(3): 671-696.
[7]
Ganger A, Singh A, Kalaivani M, et al. Outcomes of surgical interventions for the treatment of limbal stem cell deficiency[J]. Indian J Med Res, 2021, 154(1): 51-61.
[8]
Jurkunas U, Johns L, Armant M. Cultivated autologous limbal epithelial cell transplantation: new frontier in the treatment of limbal stem cell deficiency[J]. Am J Ophthalmol, 2022, 239: 244-268.
[9]
Cabral JV, Jackson CJ, Utheim TP, et al. Ex vivo cultivated oral mucosal epithelial cell transplantation for limbal stem cell deficiency: a review[J]. Stem Cell Res Ther, 2020, 11(1): 301.
[10]
Figueiredo FC, Glanville JM, Arber M, et al. A systematic review of cellular therapies for the treatment of limbal stem cell deficiency affecting one or both eyes[J]. Ocul Surf, 2021, 20: 48-61.
[11]
da-Mata-Martins-TM, da-Silva-Cunha P, Rodrigues MA, et al. Epithelial basement membrane of human decellularized cornea as a suitable substrate for differentiation of embryonic stem cells into corneal epithelial-like cells[J]. Mater Sci Eng C Mater Biol Appl, 2020, 116: 111215.
[12]
He J, Ou S, Ren J, et al. Tissue engineered corneal epithelium derived from clinical-grade human embryonic stem cells[J]. Ocul Surf. 2020, 18(4): 672-680.
[13]
寿天.人类胚胎干细胞法律规制的路径研究[J]. 医学与法学202416(2):81-85.
[14]
Calonge M, Nieto-Miguel T, de-la-Mata A, et al. Goals and challenges of stem cell-based therapy for corneal blindness due to limbal deficiency[J]. Pharmaceutics, 2021, 13(9): 1483.
[15]
Masood F, Chang JH, Akbar A, et al. Therapeutic strategies for restoring perturbed corneal epithelial homeostasis in limbal stem cell deficiency: current trends and future directions[J]. Cells, 2022, 11(20): 3247.
[16]
Zhang N, Luo X, Zhang S, et al. Subconjunctival injection of tumor necrosis factor-α pre-stimulated bone marrow-derived mesenchymal stem cells enhances anti-inflammation and anti-fibrosis in ocular alkali burns[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259(4): 929-940.
[17]
Xiao YT, Xie HT, Liu X, et al. Subconjunctival injection of transdifferentiated oral mucosal epithelial cells for limbal stem cell deficiency in rats[J]. J Histochem Cytochem, 2021, 69(3): 177-190.
[18]
Galindo S, de-la-Mata A, López-Paniagua M, et al. Subconjunctival injection of mesenchymal stem cells for corneal failure due to limbal stem cell deficiency: state of the art[J]. Stem Cell Res Ther, 2021, 12(1): 60.
[19]
Joiner D, Steinberg Y, Kang JJ. Umbilical cord graft for refractory neurotrophic keratopathy[J]. Cornea, 2023, 2(10): 1263-1267.
[20]
苏岱,张嘉莹,李瑾. 角膜知觉重建治疗神经营养性角膜病变的研究进展[J]. 中华眼科杂志202359(4):313-320.
[21]
徐睿,李双双,韩园,等.角膜痛机制的研究进展[J].复旦学报(医学版)202148(4):541-544.
[22]
Roumeau S, Dutheil F, Sapin V, et al. Efficacy of treatments for neurotrophic keratopathy: a systematic review and meta-analysis[J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(8): 2623-2637.
[23]
Deeks ED, Lamb YN. Cenegermin: A review in neurotrophic keratitis[J]. Drugs. 2020, 80(5): 489-494.
[24]
Yavuz-Saricay L, Bayraktutar BN, Lilley J, et al. Efficacy of recombinant human nerve growth factor in stage 1 neurotrophic keratopathy[J]. Ophthalmology, 2022, 129(12): 1448-1450.
[25]
Trinh T, Mimouni M, Santaella G, et al. Surgical management of the ocular surface in neurotrophic keratopathy: amniotic membrane, conjunctival grafts, lid surgery, and neurotization[J]. Eye Contact Lens, 2021, 47(3): 149-153.
[26]
Zhou TE, Robert MC. Comparing prokera with amniotic membrane transplantation: indications, Outcomes, and Costs[J]. Cornea, 2022, 41(7): 840-844.
[27]
Liu CY, Arteaga AC, Fung SE, et al. Corneal neurotization for neurotrophic keratopathy: Review of surgical techniques and outcomes[J]. Ocul Surf, 2021, 20: 163-172.
[28]
邵毅,胡瑾瑜,应平. 干眼炎症诊疗规范:2023欧洲专家共识解读[J].眼科新进展2024, 44(2):85-88.
[29]
林琳,冯云,傅瑶,等. 眼表微环境与泪膜稳态对视觉质量影响的新认识[J]. 中华眼视光学与视觉科学杂志202224(12):881-887.
[30]
Kumar NR, Praveen M, Narasimhan R, et al. Tear biomarkers in dry eye disease: Progress in the last decade[J]. Indian J Ophthalmol, 2023, 71(4): 1190-1202.
[31]
Borgia A, Raimondi R, Fossati G, et al. Device-based therapies as a boost of conventional treatment in dry eye disease[J]. Expert Rev Ophthalmol, 2022, 17: 387-393.
[32]
Vazirani J, Sridhar U, Gokhale N, et al. Autologous serum eye drops in dry eye disease: Preferred practice pattern guidelines[J]. Indian J Ophthalmol, 2023, 71(4): 1357-1363.
[33]
Watson SL, Secker GA, Daniels JT. The effect of therapeutic human serum drops on corneal stromal wound-healing activity[J]. Curr Eye Res, 2008, 33(8): 641-52.
[34]
van-der-Meer PF, Verbakel SK, Honohan Á,et al. Allogeneic and autologous serum eye drops: a pilot double-blind randomized crossover trial[J]. Acta Ophthalmol, 2021, 99(8): 837-842.
[35]
Maharajan N, Cho GW, Choi JH, et al. Regenerative therapy using umbilical cord serum[J]. In Vivo, 2021, 35(2): 699-705.
[36]
Coco G, Piccotti G, Romano V, et al. Cenegermin for the treatment of dry eye disease[J]. Drugs Today (Barc), 2023, 59(3): 113-123.
[37]
王宇珊,郑晓汾,于花,等.翼状胬肉患者术中角膜、结膜缺损面积与其术后干眼相关性的临床研究[J/OL].中华眼科医学杂志(电子版)202313(6):344-349.
[38]
Kasetsuwan N, Bhattarakosol P, Reinprayoon U, et al. Prevalence of human papillomavirus genotypes in pterygia from thai individuals [J]. Ophthalmic Epidemiol, 2022, 29(1): 85-90.
[39]
Ghiasian L, Samavat B, Hadi Y, et al. Recurrent pterygium: a review[J]. J Curr Ophthalmol, 2022, 33(4): 367-378.
[40]
Sabater-Cruz N, Dotti-Boada M, Rios J, et al. Postoperative treatment compliance rate and complications with two different protocols after pterygium excision and conjunctival autografting[J]. Eur J Ophthalmol, 2021, 31(3): 932-937.
[41]
Adriano L, Persona ELS, Persona IGS, et al. Correlation between the presumed pterygium with dry eye and with systemic and ocular risk factors[J]. Arq Bras Oftalmol, 2021, 85(2): 136-143.
[42]
Ting DSJ, Liu YC, Lee YF, et al. Cosmetic outcome of femtosecond laser-assisted pterygium surgery[J]. Eye Vis (Lond), 2021, 8(1): 7.
[43]
Alsarhani W, Alshahrani S, Showail M, et al. Characteristics and recurrence of pterygium in Saudi Arabia: a single center study with a long follow-up[J]. BMC Ophthalmol, 2021, 21(1): 207.
[44]
Crespo MA, Rapuano CJ, Syed ZA. Applications of mitomycin c in cornea and external disease[J]. Turk J Ophthalmol, 2023, 53(3): 175-182.
[45]
Lee BWH, Sidhu AS, Francis IC, et al. 5-Fluorouracil in primary, impending recurrent and recurrent pterygium: Systematic review of the efficacy and safety of a surgical adjuvant and intralesional antimetabolite[J]. Ocul Surf, 2022, 26: 128-141.
[46]
Baheran SS, Alany RG, Schwikkard S, et al. Pharmacological treatment strategies of pterygium: Drugs, biologics, and novel natural products[J]. Drug Discov Today, 2023, 28(1): 103416.
[47]
Posarelli M, Romano D, Tucci D, et al. Ocular-surface regeneration therapies for eye disorders: the state of the art[J]. BioTech (Basel), 2023, 12(2): 48.
[48]
Palewski M, Budnik A, Konopińska J. Evaluating the efficacy and safety of different pterygium surgeries: a review of the literature[J]. J Environ Res Public Health, 2022, 19(18): 11357.
[49]
Karam M, Alsaif A, Aldubaikhi A, et al. The use of fibrin glue in pterygium surgery with amniotic membrane transplantation: Systematic review and meta-analysis[J]. Saudi J Ophthalmol, 2023, 37(2): 83-89.
[50]
Mai W, Chen M, Huang M, et al. Targeting platelet-derived growth factor receptor β inhibits the proliferation and motility of human pterygial fibroblasts[J]. Expert Opin Ther Targets, 2019, 23(9): 805-817.
[1] 王胜男, 孙挥宇, 接英, 谢雯, 毛菲菲, 李丹, 鲁丹, 刘夕瑶. 慢性丙型肝炎患者干眼临床特征[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 48-54.
[2] 孙艳华. 围绝经期干眼患者结膜上皮细胞中miR-146a、TRAF6的表达研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 279-283.
[3] 张涛, 汪建茹, 赵瑾超, 葛程, 钱竹韵, 陶勇. 基质金属蛋白酶9即时检测对干眼诊断效能分析的临床研究[J]. 中华眼科医学杂志(电子版), 2024, 14(01): 14-19.
[4] 王宇珊, 郑晓汾, 于花, 韩玉萍, 宁晓玲. 翼状胬肉患者术中角膜、结膜缺损面积与其术后干眼相关性的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 344-349.
[5] 李新星, 方晏红, 陈会振, 张蓝月, 刘涵. 维生素D与眼病关系的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 366-370.
[6] 王霜, 接英. 近视眼与干眼相关性的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 311-315.
[7] 王文莹, 田磊, 潘志强. 3%地夸磷索钠滴眼液治疗干眼前后自觉症状改善和体征变化关系的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 279-284.
[8] 冷玥祺, 廖衍沣, 武歆纯, 李美瑶, 石逸雯, 王晋豪, 杨嘉瑞, 李学民. 环境因素对眼部生理与病理影响的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 109-113.
[9] 韦远, 徐西占, 梁庆丰. 免疫性眼表疾病眼表菌群的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 55-59.
[10] 白静怡, 黄轩, 张益权, 田颖, 陶勇. 小鼠干眼模型构建及其角膜特征检测的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 12-17.
[11] 荆大兰, 江晓丹, 杨嘉瑞, 李学民. 眼表菌群改变与干眼关系的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 372-376.
[12] 程英, 安文在, 林丹婷, 王宁利. 肠道菌群与眼部常见疾病关系的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 305-309.
[13] 丁一, 郝然, 王嘉瑢, 李学民. 角膜神经改变与干眼的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 242-246.
[14] 王静漪, 接英. 泪液渗透压在干眼发生机制和临床应用中的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(05): 301-305.
[15] 周佳佳, 俞莹, 梁舒. 视频终端视相关性干眼症的机制研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(04): 402-406.
阅读次数
全文


摘要