切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (02) : 109 -113. doi: 10.3877/cma.j.issn.2095-2007.2023.02.009

综述

环境因素对眼部生理与病理影响的研究进展
冷玥祺, 廖衍沣, 武歆纯, 李美瑶, 石逸雯, 王晋豪, 杨嘉瑞, 李学民()   
  1. 100191 北京大学第三医院眼科 北京眼神经损伤定量研究重点实验室
  • 收稿日期:2022-07-06 出版日期:2023-04-28
  • 通信作者: 李学民
  • 基金资助:
    首都卫生发展科研专项项目(CFH2018-2-4093)

Advance on the effect of environmental factors on ocular physiology and pathology

Yueqi Leng, Yanfeng Liao, Xinchun Wu, Meiyao Li, Yiwen Shi, Jinhao Wang, Jiarui Yang, Xuemin Li()   

  1. Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Quantitative Research on Ophthalmic Nerve Injury, Beijing 100191, China
  • Received:2022-07-06 Published:2023-04-28
  • Corresponding author: Xuemin Li
引用本文:

冷玥祺, 廖衍沣, 武歆纯, 李美瑶, 石逸雯, 王晋豪, 杨嘉瑞, 李学民. 环境因素对眼部生理与病理影响的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 109-113.

Yueqi Leng, Yanfeng Liao, Xinchun Wu, Meiyao Li, Yiwen Shi, Jinhao Wang, Jiarui Yang, Xuemin Li. Advance on the effect of environmental factors on ocular physiology and pathology[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(02): 109-113.

海拔、氧浓度、温度、湿度及光照等环境条件的改变均可引起眼部生理病理反应,但其影响机制尚未明确。本文中笔者就氧浓度、温度、海拔、湿度及光照等环境因素对视力、眼压、视野、眼表机能及视网膜血流的影响进行归纳总结,以期为环境因素对眼部生理病理影响的研究提供参考。

Changes in environmental conditions such as altitude, oxygen concentration, temperature, humidity, and light can all cause physiological and pathological reactions in the eyes, but the mechanism of their effects is not yet clear. In this article, the author summarizes the effects of environmental factors such as oxygen concentration, temperature, altitude, humidity, and light on vision, intraocular pressure, visual field, ocular surface function, and retinal blood flow, in order to provide reference for the study of the physiological and pathological effects of environmental factors on the eyes.

[1]
Provis JM. Development of the primate retinal vasculature[J]. Prog Retin Eye Res, 2001, 20(6): 799-821
[2]
Xie Y, Yang Y, Han Y, et al. Association between arterial blood gas variation and intraocular pressure in healthy subjects exposed to acute short-term hypobaric hypoxia[J]. Transl Vis Sci Technol, 2019, 8(6): 22.
[3]
吴瑜瑜. 高压氧疗法在眼科临床的应用系列研究[D]. 福州:福建医科大学附属第二医院,2004:5.
[4]
高丰,黄漫清,王孙德,等. 高压氧治疗对眼压的影响[J]. 实用眼科杂志19943(11):185-186.
[5]
Jones L, Downie LE, Korb D, et al.TFOS DEWS Ⅱ management and therapy report[J]. Ocul Surf, 2017, 15(3): 575-628.
[6]
Jellas V. Temperature effects on synaptic transmission and neuronal function in the visual thalamus[J]. PLoS One, 2020, 15(4): 2-3.
[7]
Xie Y, Sun YX, Han Y, et al. Longitudinal observation of intraocular pressure variations with acute altitude changes[J]. World J Clin Cases, 2019, 7(20): 3226-3236.
[8]
Pournaras CJ, Rungger-Brändle E, Riva CE, et al. Regulation of retinal blood flow in health and disease[J]. Prog Retin Eye Res, 2008, 27(3): 284-330.
[9]
Kaur C, Sivakumar V, Foulds WS, et al.Cellular and vascular changes in the retina of neonatal rats after an acute exposure to hypoxia[J]. Invest Ophthalmol Vis Sci, 2009, 50(11): 5364-5374.
[10]
Ribatti D, Nico B, Spinazzi R, et al. The role of adrenomedullin in angiogenesis[J]. Peptides, 2005, 26(9): 1670-1675.
[11]
Mavis A. Pivotal role of plasminogen-activator inhibitor 1 in vascular disease[J]. Int J Clin Pract, 2005, 59(1): 102-106.
[12]
Niu R, Nie ZT, Liu L, et al. Follistatin-like protein 1 functions as a potential target of gene therapy in proliferative diabetic retinopathy[J]. Aging (Albany NY), 2021, 13(6): 8643-8664.
[13]
Sousa DC, Leal I, Moreira S, et al. Hypoxia challenge test and retinal circulation changes——a study using ocular coherence tomography angiography[J]. Acta Ophthalmol, 2018, 96(3): 315-319.
[14]
Bosch MM, Merz TM, Barthelmes D, et al.New insights into ocular blood flow at very high altitudes[J]. J Appl Physiol, 2009, 106(2): 454-460.
[15]
丁小华,陈秋玉,杨静芳,等. 糖尿病眼病变患者的视功能各参数研究分析[J]. 黑龙江医药202033(4):215-217.
[16]
Khan FA, Mcintyre C, Khan AM, et al. Headache and me-themoglobinemia[J]. Headache, 2020, 60(1): 291-297.
[17]
Najmanová E, Pluháĉek F, Botek M, et al. Intraocularpressure response to short-term extreme normobaric hypoxia exposure[J]. Front Endocrinol (Lausanne), 2018, 9(1): 785.
[18]
Cesareo M. Links between obstructive sleep apnea and glaucoma neurodegeneration[J]. Prog Brain Res, 2020, 257(1): 19-36.
[19]
Chaitanya A, Pai V, Mohapatra A, et al. Glaucoma and its association with obstructive sleep apnea: A narrative review[J]. Oman J Ophthalmol, 2016, 9(3): 125-134.
[20]
杜婷. 新生小鼠缺氧缺血性脑损伤后伴发白内障的研究[D]. 昆明:昆明医科大学,2020:12.
[21]
安明皎. 高压氧治疗视网膜震荡伤64例疗效观察[J]. 四川省卫生管理干部学院学报20001(3):13.
[22]
仇宜解,王玲,程宏,等. 高压氧对兔眼视网膜血流量和细胞因子影响的实验研究[J]. 眼科新进展19995(2):309-311.
[23]
Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWSⅡ definition and classification report[J]. Ocul Surf, 2017, 15(3): 276-283.
[24]
Stapleton F, Alves M, Bunya VY, et al.TFOS DEWS Ⅱ epidemiology report[J]. Ocul Surf, 2017, 15(3): 334-365.
[25]
王玲,王培嵩,王云霄,等. 高压氧对去卵巢大鼠泪液分泌及泪腺形态学的影响[J]. 中华航海医学与高气压医学杂志20106(2):337-340.
[26]
Katja R, Marion M, Elisabeth G, et al. Hypothermia promotes survival of ischemic retinal ganglion cells[J]. Invest Ophthalmol Vis Sci, 2016, 57(2): 658-663.
[27]
Lei X, Van KA. Research progress of the application of hypothermia in the eye[J]. Oxid Med Cell Longev, 2020, 1(15): 38.
[28]
Quiñones-Hinojosa A, Malek JY, Ames A, et al. Metabolic effects of hypothermia and its neuroprotective effects on the recovery of metabolic and electrophysiological function in the ischemic retina in vitro[J]. Neurosurgery, 2003, 52(5): 1178-1186.
[29]
Veire SVD, Germonpre P, Renier C, et al. Influences of atmospheric pressure and temperature on intraocular pressure[J]. Invest Ophthalmol Vis Sci, 2008, 49(12): 5392-5396.
[30]
Galassi F, Giambene B, Corvi A, et al. Evaluation of ocular surface temperature and retrobulbar haemodynamics by infrared thermography and colour doppler imaging in patients with glaucoma[J]. Br J Ophthalmol, 2007, 91(7): 878-881.
[31]
Nicou CM, Pillai A, Passaglia CL. Effects of acute stress, general anesthetics, tonometry, and temperature on intraocular pressure in rats[J]. Exp Eye Res, 2021, 21(10): 108.
[32]
Terelak-Borys B, Grabska-Liberek I, Schoetzau A, et al. Transient visual field impairment after cold provocation in glaucoma patients with flammer syndrome[J]. Restor Neurol Neurosci, 2019, 37(1): 31-39.
[33]
沈慧妍,张琳. 角膜温度与蒸发过强型干眼的关系[J]. 上海交通大学学报(医学版)200929(2):203-205.
[34]
Berg EJ, Ying GS, Maguire MG, et al. Climatic and environmental correlates of dry eye disease severity: A report from the dry eye assessment and management (dream) study[J]. Transl Vis Sci Technol, 2020, 9(5): 25.
[35]
Wolffsohn JS, Arita R, Chalmers R, et al. TFOS DEWS Ⅱ diagnostic methodology report[J]. Ocul Surf, 2017, 15(3): 539-574.
[36]
Gabriel W, Dominik FM, Kai S, et al. Missing correlation of retinal vessel diameter with high-altitude headache[J]. Ann Clin Transl Neurol, 2014, 1(1): 59-63.
[37]
Xie Y, Yang Y, Han Y, et al. Association between arterial blood gas variation and intraocular pressure in healthy subjects exposed to acute short-term hypobaric hypoxia[J]. Transl Vis Sci Technol, 2019, 8(6): 22.
[38]
Bayer A, Yumuᶊak E, Sahin OF, et al. Intraocular pressure measured at ground level and 10,000 feet[J]. Aviat Space Environ Med, 2004, 75(6): 543-545.
[39]
Gabriel W, Kai S, Maximilian S, et al. Effect of high altitude exposure on intraocular pressure using goldmann applanation tonometry[J]. High Alt Med Biol, 2017, 18(2): 114-119.
[40]
杨一佺. 高海拔环境对眼部影响的研究进展[J]. 中华实验眼科杂志2019, 12(6): 481-485.
[41]
Gekeler K, Schatz A, Fischer MD, et al. Decreased contrast sensitivity at high altitude[J]. Br J Ophthalmol, 2019, 103(12): 1815-1819.
[42]
Vecchi D, Morgagni F, Guadagno AG, et al. Visual function at altitude under night vision assisted conditions[J]. Aviat Space Environ Med, 2014, 85(1): 60-65.
[43]
Jha KN. High altitude and the eye[J]. Asia Pac J Ophthalmol (Phila), 2012, 1(3): 166-169.
[44]
Lu P, Chen X, Liu X, et al. Dry eye syndrome in elderly tibetans at high altitude: A population-based study in China[J]. Cornea, 2008, 27(5): 545-551.
[45]
Jonas J, Guggenmoos-Holzmann I, Brambring D, et al. Weather influences on intraocular pressure in patients with chronic glaucoma or ocular hypertension[J]. Klin Monbl Augenheilkd, 1986, 189(6): 445-449.
[46]
Liao N, Xie YQ, Mao GY, et al. Observation seasonal variation of intraocular pressure in young healthy volunteers[J]. Int J Ophthalmol, 2022, 15(1): 59-64.
[47]
张婉婷. 环境温湿度对泪膜稳定性影响的分析研究[D]. 开封:开封市中心医院,2019: 12.
[48]
Hwang SH, Choi YH, Paik HJ, et al. Potential importance of ozone in the association between outdoor air pollution and dry eye disease in South Korea[J]. JAMA Ophthalmology, 2016, 134(5): 145-147.
[49]
Ogawa M, Dogru M, Toriyama N, et al. Evaluation of the effect of moist chamber spectacles in patients with dry eye exposed to adverse environment conditions[J]. Eye Contact Lens, 2018, 44(6): 379-383.
[50]
Huang A, Janecki J, Galor A, et al. Association of the indoor environment with dry eye metrics[J]. JAMA Ophthalmol, 2020, 138(8): 867-874.
[51]
Krigel A, Berdugo M, Picard E, et al. Light-induced retinal damage using different light sources, protocols and rat strains reveals led phototoxicity[J]. Neuroscience, 2016, 339: 296-307.
[52]
Balogh B, Szarka G, Tengölicsá ÁJ, et al. Led-induced microglial activation and rise in caspase3 suggest a reorganization in the retina[J]. Int J Mol Sci, 2021, 22(19): 124-125.
[53]
Yuan K, Zhu H, Mou Y, et al. Effects on the ocular surface from reading on different smartphone screens: A prospective randomized controlled study[J]. Clin Transl Sci, 2021, 14(3): 829-836.
[54]
Dell SJ. Intense pulsed light for evaporative dry eye disease[J]. Clin Ophthalmol, 2017, 11: 1167-1173.
[55]
Suwal A, Hao JL, Zhou DD, et al. Use of intense pulsed light to mitigate meibomian gland dysfunction for dry eye disease[J]. Int J Med Sci, 2020, 17(10): 1385-1392.
[1] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[2] 张秀杨, 张龙飞, 陈世远, 高涌. 缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究[J]. 中华普通外科学文献(电子版), 2023, 17(01): 18-23.
[3] 江振剑, 蒋明, 黄大莉. 基于决策曲线分析血清E-cad、HIF-1α预测乳腺癌改良根治术治疗预后的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 272-275.
[4] 陈玉婷, 周影, 陆雅斐, 江滨. 缺氧预处理间充质干细胞的功能及机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 115-120.
[5] 田鹏飞, 王丽娟, 肖圣超. 黄芪总黄酮通过调控miR-190a-5p对缺氧/复氧诱导的心肌细胞损伤的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 346-352.
[6] 王星月, 舒亮辉, 朝亚. 罗沙司他在炎症反应中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(02): 101-104.
[7] 韦远, 徐西占, 梁庆丰. 免疫性眼表疾病眼表菌群的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 55-59.
[8] 李茹月, 庞睿奇, 王宁利. 血脂异常与原发性开角型青光眼发病相关性的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 35-39.
[9] 王柠, 王佳伟, 刘旭阳. 重视眼颅压力差在多学科领域的应用[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 321-325.
[10] 荆大兰, 江晓丹, 杨嘉瑞, 李学民. 眼表菌群改变与干眼关系的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 372-376.
[11] 肖海燕, 段业英, 吴玥琳, 伍丽婵, 唐灏珂. 神经学音乐治疗心搏骤停后缺血缺氧性脑病产妇一例[J]. 中华重症医学电子杂志, 2023, 09(02): 217-224.
[12] 梁玉兰, 陈亮, 曾令梅. NLR、RDW水平联合振幅整合脑电图在缺氧缺血性脑病患儿的预后研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 84-89.
[13] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[14] 肖莹莹, 田茵琦, 彭雪梅. 减重手术胃肠道血流量下降的原因及干预措施[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 179-185.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要