[1] |
Zhang X, Zeng H, Bao S, et al. Diabetic macular edema: new concepts in patho-physiology and treatment[J]. Cell Biosci, 2014, 4(1): 27.
|
[2] |
张新媛,肖新华. 美国糖尿病学会2017年糖尿病视网膜病变立场声明解读[J]. 中国糖尿病杂志,2017,9(7):415-418.
|
[3] |
Zhang X, Wang N, Barile GR, et al. Diabetic retinopathy: neuron protection as a therapeutic target[J]. Int J Biochem Cell Biol, 2013, 45(7): 1525-1529.
|
[4] |
American Diabetes Association. Diagnosis and classification of diabetes mellitus[J]. Diabetes Care, 2014, 37(1): S81-S90.
|
[5] |
诸骏仁,高润霖,赵水平,等. 中国成人血脂异常防治指南(2016年修订版)[J]. 中国循环杂志,2016,16(10):15-35.
|
[6] |
Sinclair A, Saeedi P, Kaundal A, et al. Diabetes and global ageing among 65-99-year-old adults: Findings from the International Diabetes Federation Diabetes Atlas, 9(th) edition[J]. Diabetes Res Clin Pract, 2020, 162: 108078-108085.
|
[7] |
Yau JWY, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35(3): 556-564.
|
[8] |
中华医学会眼科学会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2014年)[J]. 中华眼科杂志,2014,50(11):851-865.
|
[9] |
Wang FH, Liang YB, Zhang F, et al. Prevalence of diabetic retinopathy in rural China: the Handan eye study[J]. Ophthalmology, 2009, 116(3): 461-467.
|
[10] |
Klein R, Klein BEK. Blood pressure control and diabetic retinopathy[J]. Br J Ophthalmol, 2002, 86(4): 365-367.
|
[11] |
Keen H. The diabetes control and complications trial (DCCT)[J]. Health Trends, 1994, 26(2): 41-43.
|
[12] |
Group UPDS. UK prospective diabetes study (UKPDS)[J]. Diabetologia, 1993, 36(10): 1021-1029.
|
[13] |
Committee AM. Study rationale and design of ADVANCE: action in diabetes and vascular disease--preterax and diamicron MR controlled evaluation[J]. Diabetologia, 2001, 44(9): 1118-1120.
|
[14] |
Chew EY, Ambrosius WT, Davis MD, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes[J]. New Engl J Med, 2012, 367(25): 37.
|
[15] |
Chew EY, Ambrosius WT, Howard LT, et al. Rationale, design, and methods of the action to control cardiovascular risk in diabetes eye study (ACCORD-EYE)[J]. Am J Cardiol, 2007, 99(12): S103-S111.
|
[16] |
Keech AC, Mitchell P, Summanen PA, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial[J]. Lancet, 2007, 370(9600): 1687-1697.
|
[17] |
Biljana M, Glynn RJ, Nathan DM, et al. A prospective study of serum lipids and risk of diabetic macular edema in type 1 diabetes[J]. Diabetes, 2004, 53(11): 2883.
|
[18] |
Taddei C, Zhou B, Bixby H, et al. Repositioning of the global epicentre of non-optimal cholesterol[J]. Nature, 2020, 582(7810): 73-77.
|
[19] |
Wong TY, Cheung N, Tay WT, et al. Prevalence and risk factors for diabetic retinopathy: the singapore malay eye study[J]. Ophthalmology, 2008, 115(11): 1869-1875.
|
[20] |
Vira J, Marchese A, Singh RB, et al. Swept-source optical coherence tomography imaging of the retinochoroid and beyond[J]. Expert Rev Med Devices, 2020, 17(5): 413-426.
|
[21] |
Mitsch C, Lammer J, Karst S, et al. Systematic ultrastructural comparison of swept-source and full-depth spectral domain optical coherence tomography imaging of diabetic macular oedema[J]. Br J Ophthalmol, 2020, 104(6): 868-873.
|
[22] |
Choi WJ, Waheed NK, Moult EM, et al. Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations in diabetic patients with and without retinopathy[J]. Retina, 2017, 37(1): 11-21.
|
[23] |
Russell JF, Shi Y, Hinkle JW, et al. Longitudinal wide field swept source OCT sngiography of neovascularization in proliferative diabetic retinopathy after panretinal photocoagulation[J]. Ophthalmol Retina, 2019, 3(4): 350-361.
|
[24] |
Mochi T, Anegondi N, Girish M, et al. Quantitative comparison between optical coherence tomography angiography and fundus fluorescein angiography images: effect of vessel enhancement[J]. Ophthalmic Surg Lasers Imaging Retina, 2018, 49(11): e175-e181.
|
[25] |
Kwan CC, Fawzi AA. Imaging and biomarkers in Diabetic Macular Edema and Diabetic Retinopathy[J]. Curr Diab Rep, 2019, 19(10): 95.
|
[26] |
Lu Y, Simonett JM, Wang J, et al. Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2212-2221.
|
[27] |
Balaratnasingam C, Inoue M, Ahn S, et al. Visual acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion[J]. Ophthalmology, 2016, 123(11): 2352-2367.
|
[28] |
Liu G, Xu D, Wang F. New insights into diabetic retinopathy by OCT angiography[J]. Diabetes Res Clin Pract, 2018, 142: 243-253.
|
[29] |
Nesper PL, Soetikno BT, Zhang HF, et al. OCT angiography and visible-light OCT in diabetic retinopathy[J]. Vision Res, 2017, 139(1): 191-203.
|
[30] |
Di G, Yu W, Xiao Z, et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(5): 873-879.
|
[31] |
Kim DY, Fingler J, Zawadzki RJ, et al. Noninvasive Imaging of the Foveal Avascular Zone with High-Speed, Phase-Variance Optical Coherence Tomography[J]. Invest Ophthalmol Vis Sci, 2012, 53(1): 85-92.
|
[32] |
Hegazy AI, Zedan RH, Macky TA, et al. Retinal ganglion cell complex changes using spectral domain optical coherence tomography in diabetic patients without retinopathy[J]. Int J Ophthalmol, 2017, 10(3): 427-433.
|
[33] |
Zhang X, Lai D, Bao S, et al. Triamcinolone acetonide inhibits p38MAPK activation and neuronal apoptosis in early diabetic retinopathy[J]. Curr Mol Med, 2013, 13(6): 946-958.
|
[34] |
Kern TS, Barber AJ. Retinal ganglion cells in diabetes[J]. J Physiol, 2008, 586(18): 4401-4408.
|
[35] |
Balendra SI, Normando EM, Bloom PA, et al. Advances in retinal ganglion cell imaging[J]. Eye, 2015, 29(10): 1260-1269.
|
[36] |
Vuong LN, Hedges TR. Ganglion cell layer complex measurements in compressive optic neuropathy[J]. Curr Opin Ophthalmol, 2017, 28(6): 573-578.
|
[37] |
Rodrigues EB, Urias MG, Penha FM, et al. Diabetes induces changes in neuroretina before retinal vessels: a spectral-domain optical coherence tomography study[J]. Int J Retina Vitreous, 2015, 1(1): 4.
|
[38] |
Ng DS, Chiang PP, Tan G, et al. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy[J]. Clin Exp Ophthalmol, 2016, 44(4): 243-250.
|
[39] |
Gerendas BS, Hatz K, Kaider A, et al. Ganglion cell layer thickening in well-controlled patients with type 1 diabetes: an early sign for diabetic retinopathy?[J]. Acta Ophthalmol, 2020, 98(3): 292-300.
|
[40] |
Yan L, Zhao Z, Hang W. Protective effect of App 17-mer peptide on neuroretina in DR[J]. Chinese Ophthalmic Research, 2002, 20(4): 289-292.
|