切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (06) : 360 -365. doi: 10.3877/cma.j.issn.2095-2007.2019.06.007

论著

应用深度增强型成像技术研究早期年龄相关性黄斑变性患者黄斑区脉络膜厚度的变化
刘骁1, 刘娜1,(), 李鉴达1, 张旭1, 尹文玲1   
  1. 1. 100068 中国康复研究中心北京博爱医院眼科
  • 收稿日期:2019-08-12 出版日期:2019-12-28
  • 通信作者: 刘娜
  • 基金资助:
    中央级公益性科研院所基本科研业务费专项(2014CZ-6)

The choroidal thickness in the macular area of patients with early age-related macular degeneration using depth-enhanced imaging

Xiao Liu1, Na Liu1,(), Jianda Li1, Xu Zhang1, Wenling Yin1   

  1. 1. Department of Ophthalmology, China Rehabilitation Research Center Beijing Bo Ai Hospital, Beijing 100068, China
  • Received:2019-08-12 Published:2019-12-28
  • Corresponding author: Na Liu
引用本文:

刘骁, 刘娜, 李鉴达, 张旭, 尹文玲. 应用深度增强型成像技术研究早期年龄相关性黄斑变性患者黄斑区脉络膜厚度的变化[J]. 中华眼科医学杂志(电子版), 2019, 09(06): 360-365.

Xiao Liu, Na Liu, Jianda Li, Xu Zhang, Wenling Yin. The choroidal thickness in the macular area of patients with early age-related macular degeneration using depth-enhanced imaging[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(06): 360-365.

目的

应用深度增强型相干光断层扫描(EDI-OCT)技术研究早期年龄相关性黄斑变性(AMD)患者黄斑区脉络膜厚度的变化及其与AMD发病的关系。

方法

收集2015年3月至2017年3月于中国康复研究中心北京博爱医院眼科就诊的早期AMD患者90例(90只眼)和眼底正常者60例(60只眼)的临床资料。早期AMD患者为患者组,眼底正常者为正常组。患者组中男性51例(51只眼),女性39例(39只眼);年龄63~85岁,平均年龄(74.3±10.9)岁。正常组中男性24例(24只眼),女性36例(36只眼);年龄58~78岁,平均年龄(68.6±10.8)岁。采用EDI-OCT测量两组受试者黄斑中心凹处及由中心凹向鼻侧、颞侧各500 μm、1000 μm处的脉络膜厚度,共测量5个点位。数据以均数±标准差(±s)表示。两组间脉络膜厚度的比较采用t检验,多组间比较采用单因素方差分析,组间两两比较采用Tukey检验。

结果

患者组黄斑区脉络膜的平均厚度为(254.84±51.46)μm;正常组黄斑区脉络膜的平均厚度为(271.46±43.36)μm。患者组黄斑区脉络膜的厚度较正常组低,且两组间差异有统计学意义(t=-2.061,P<0.05)。所有受试者的年龄与脉络膜的厚度呈负相关,且差异有统计学意义(r=-0.23,P<0.05)。

结论

早期AMD患者的脉络膜厚度较眼底正常者偏薄,且早期AMD患者脉络膜厚度的改变可作为黄斑变性发展的预警因素,能为早期的临床干预提供参考。

Objective

The aim of this study was to investigate the relationship between macular choroidal thickness changes and the development of age-related macular degeneration (AMD) in patients with early AMD using depth-enhanced imaging technique (EDI-OCT).

Methods

From March 2015 to March 2017, 90 patients (90 eyes) with early AMD and 60 patients with normal fundus (60 eyes) from the Department of Ophthalmology, China Rehabilitation Research Center Beijing Bo Ai Hospital were selected. Those with early AMD was as patient group, and patients with normal fundus as normal group. In patient group, there were 51 male (51 eyes) and 39 female (39 eyes), and the age range was 63 to 85, and the average age was (74.3±10.9) years-old. In normal group, there were 60 male (60 eyes) and 24 female (24 eyes), and the age range was 63 to 85, the average age was (68.6±10.8) years-old. All patients was to measure the choroidal thickness of the fovea and the choroidal thickness from the fovea to the nasal and temporal sides at 500 μm and 1000 μm using EDI-OCT, respectively. There were 5 measuring sites in this study. The data were represented as mean±standard deviation (±s). The t test was used to compare the differences in choroidal thickness. One-way analysis of variance was used for comparison between groups. The Tukey test was used for comparison between groups. The correlation between choroidal thickness and age was analyzed by linear correlation.

Results

The choroidal thickness of the fovea in the early AMD patients was lower than that of the normal group, whose difference between them was statistically significant(t=-2.061, P<0.05). In the early AMD patients, the average foveal thickness of the fovea was (254.84±51.46) μm. The average thickness of the foveal choroid in the normal group was (271.46±43.36)μm, That shown a negative correlation between the age and choroidal thickness (r=-0.23, P<0.05).

Conclusions

The choroidal thickness of the eyes of patients with early AMD was significantly thinner than that of the normal group. The change of choroidal thickness in early AMD patients could be used as a warning factor for the further development of macular degeneration, which could provide a basis for early intervention.

图1 脉络膜厚度测量的5处点位示意图 黄斑中心凹及以中心凹为中心,颞侧各500 μm、1000 μm至鼻侧各500 μm、1000 μm
图2 黄斑中心凹脉络膜厚度与年龄相关的线性图
图3 患者组与正常组受检眼黄斑中心凹处脉络膜厚度的比较 3A示两组受检眼黄斑中心凹处脉络膜厚度的箱式图;3B示两组受检眼黄斑中心凹处脉络膜厚度的柱状图
表1 患者组与正常组脉络膜厚度的比较(±s,μm)
[1]
赵堪兴,杨培增. 眼科学[M]. 北京:人民卫士出版社,2008.
[2]
Nations United. World Population prospects:2004 revision[M]. New York: United Nations, 2005.
[3]
Bird AC, Bressler NM, Bressler SB, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration[J]. Surv Ophthalmol, 1995, 39(5): 367-374.
[4]
Mitchell P, Korobelnik JF, Lanzetta P, et al. Ranibizumab(Lucentis) in neovascular age-related macular degeneration:evidence from clinical trials[J]. Br J Ophthalmol, 2010, 94(1): 2-13.
[5]
AREDS. Arandomized,placebo-controlled,clinical trial of high-dose supplementation with vitamins C and E, beta carotene,and zinc for age-related macular degeneration and vision loss: AREDS report No.8[J]. Arch Ophthalmol, 2001, 119(10): 1417-1436.
[6]
Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes[J].Am J Opthalmol, 2009, 147(5): 811-815.
[7]
Fujiwara T, Imamura Y, Margolis R, et al. Enhanced depth imaging optical coherence tomogarphy of the choroid in highly myopic eyes[J]. Am J Ophthalmol, 2009, 148(3): 445-450.
[8]
Gomi F, Tano Y. Polypoidal choroidal vascolopathy and treatments[J]. Curr Opin Ophthalmol, 2008, 19(3): 208-212.
[9]
Teschner S, Noack J, Birngruber R, et al. Characterization of leakage activityin exudative chorioretinal disease with three-dimensional confocal angiography [J]. Ophthalmology, 2003, 110(4): 687-697.
[10]
Imamura Y, Fujiwara T, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopthy[J]. Retina, 2009, 29(10): 1469-1473.
[11]
Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes[J]. Am J Ophthalmol, 2009, 147(5): 811-815.
[12]
Manjunath V, Taha M, Fujimoto JG, et al. Choroidal thickness in normal eyes measured using C irrus HD optical coherence tomography[J]. Am J Ophthalmol, 2010, 150(3): 325-329.
[13]
Ding X, Li J, Zeng J, et al. Choroidal thickness in healthy Chinese subjects[J]. Invest Ophthalmol Vis Sci, 2011, 52(13): 9555-9560.
[14]
Li XQ, Larsen M, Munch IC. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish University students[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 8438-8441.
[15]
Sogawa K, Nagaoka T, Takahashi A, et al. Relationship betw een choroidal thickness and choroidal circulation in healthy young subjects[J]. Am J Ophthalmol, 2012, 153(6): 1129-1132.
[16]
Tan CS, Ouyang Y, Ruiz H, et al. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography [J]. Invest Ophthalmol Vis Sci, 2012, 53(1): 261-266.
[17]
Fujiwara T, Imamura Y, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes[J]. Am J Ophthalmol, 2009, 148(3): 445-450.
[18]
Nishida Y, Fujiwara T, Imamura Y, et al. Choroidal thickness and visual acuity in highly myopic eyes[J]. Retina, 2012, 32(7): 1229, 1236.
[19]
Spaide RF, Goldbaum M, Wong DW, et al. Serous detachment of the retina[J]. Retina, 2003, 23(6): 820-846.
[20]
Tittl M, Polska E, Kircher K, et al. Topical funds pulsation measurement in patients with active central serous chorio retinopathy[J]. Arch Ophthalmol, 2003, 121(7): 975-978.
[21]
Tittl M, Maar N, Polska E, et al. Choroidal hemodynamic changes during isometric exercise in patients with inactive central serous chorioretinopathy[J]. Invest Ophthalmol Vis Sci, 2005, 46(12): 4717-4721.
[22]
Imamura Y, Fujiwara T, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy[J]. Retina, 2009, 29(10): 1469-1473.
[23]
Maruko I, Iida T, Sugano Y, et al. Subfoveal choroidal thickness in fellow eyes of patients with central serous chorioretinopathy[J]. Retina, 2011, 31(8): 1603-1608.
[24]
Anders P, Michael L. Choroidal thichness following extrafoveal photodynamic treatment with verteporfin in patients with central serous chorio retinopathy[J]. Acta Ophthalmol, 2012, 90 (8): 738-743.
[25]
Ichiro M, Tomohiro I, Yukinori S, et al. One year choroidal thickness results after photodynamic therapy for central serous chorioretinopathy[J]. Retina, 2011, 31(9): 1921-1927.
[26]
Shin JY, Woo SJ, Yu HG, et al. C omparison of efficacy and safety between half-fluence and full-fluence photodynamic therapy for chronic central serous chorioretinopathy[J]. Retina, 2011, 31(1): 119-126.
[27]
Weinberger D, Kramer M, Priel E, et al. Indocyanine green angiographic findings in nonproliferative diabetic retinopathy[J]. Am J Ophthalmol, 1998, 126( 2): 238-247.
[28]
Esmaeelpour M, Povazay B, Hermann B, et al. Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2011, 52( 8): 5311-5316.
[29]
Esmaeelpour M, Povaay B, Hermann B, et al. Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes[J]. Br J Ophthalmol, 2004, 88 (8): 1060-1063.
[30]
Schocket LS, Brucker AJ, Niknam RM, et al. Foveolar choroidal hemodynamics in proliferative diabetic retinopathy[J]. Int Ophthalmol, 2004, 25(2): 89-94.
[31]
Shiragami C, Shiraga F, Matsuo T, et al. Risk factors for diabetic choroidopathy in patients with diabetic retinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2002, 240( 6): 436-442.
[32]
Bordaberry MF. Vogt-Koyanagi-Harada disease: diagnosis and treatments update[J]. Curr Opin Ophthalmol, 2010, 21(6): 430-435.
[33]
Fardeau C, Tran TH, Gharbi B, et al. Retinal fluorescein and indocyanine green angiography and optical coherence tomography in successive stages of Vogt-Koyanagi-Harada disease[J]. Int Ophthalmol, 2007, 27(2/3): 163-172.
[34]
Herbort CP, Mantovani A, Bouchenaki N. Indocyanine green angiography in Vogt-Koyanagi-Harada disease: angiographic signs and utility in patient follow-up[J]. Int Ophthalmol, 2007, 27(2/3): 173-182.
[35]
Maruko I, Iida T, Sugano Y, et al. Subfoveal retinal and choroidal thickness after verteporfin photodynamic therapy for polypoidal choroidal vasculopathy[J]. Am J Ophthalmol, 2011, 151(4): 594-603.
[36]
Fong AH, Li KK, Wong D. Choroidal evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt-Koyanagi-Harada disease[J].Retina, 2011, 31(3): 502-509.
[37]
Rao NA. Pathology of Vogt-Koyanagi-Harada disease[J]. Int Ophthalmol, 2007, 27( 2/3): 81-85.
[38]
杜君,雷方. Vogt-小柳-原田综合征黄斑中心凹脉络膜厚度分析[J]. 眼科新进展2016, 36( 8): 777-779.
[39]
Galassi F, Sodi A, Ucci F, et al. Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study[J]. Arch Ophthalmol, 2003, 121(12): 1711-1715.
[40]
Grunwald JE, Piltz J, Hariprasad SM, et al. Optic nerve and choroidal circulation in glaucoma[J]. Invest Ophthalmol Vis Sci, 1998, 39(12): 2329-2336.
[41]
Nicolela MT, Hnik P, Drance SM. Scanning laser Doppler flowmeter study of retinal and optic disk blood flow in glaucomatous patients[J]. Am J Ophthalmol, 1996, 122( 6): 775-783.
[42]
Jonas JB. Clinical implications of peripapillary atrophy in glaucoma[J]. Curr Opin Ophthalmol, 2005, 16(2): 84-88.
[43]
Spaide RF. Age-related choroidal atrophy[J]. Am J Ophthamol, 2009, 147(5): 801-810.
[44]
Pablo LE, Bambo MP, Cameo B, et al. The use of zonal analysis of peripapillary choroidal thickness in primary open-angle glaucoma[J]. Jpn J Ophthalmol, 2018, 62(1): 41-47.
[45]
Maul EA, Friedman DS, Chang DS, et al. Choroidal thickness measured by spectral domain optical coherence tomography:factors affecting thickness in glaucoma patients[J]. Ophthalmology, 2011, 118(8): 1571-1579.
[46]
Ho J, Branchini L, Regatieri C, et al. Analysis of normal peripapillary choroidal thickness via spectral domain optical coherence tomography[J]. Ophthalmology, 2011, 118(10): 2001-2007.
[47]
Mwanza JC, Hochberg JT, Banitt MR, et al. Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3430-3435.
[48]
Ehrlich JR, Peterson J, Parlitsis G, et al. Peripapillary choroidal thickness in glaucoma measured with optical coherence tomography[J]. Exp Eye Res, 2011, 92(3): 189-194.
[49]
Usui S, Ikuno Y, Miki A, et al. Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal tension glaucoma[J]. Am J Ophthalmol, 2012, 153(1): 10-16.
[50]
Klein R, Klein BE, Linton KL. Prevalence of age-related maculopathy : The Beaver Dam Eye Study[J]. Ophthalmology, 1992, 99(6) : 933-943.
[51]
Spaide RF. Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration[J]. Am J Ophthalmol, 2009, 147(4): 644-652.
[52]
Koizumi H, Yamagishi T, Yamazaki T, et al. Subfoveal choroidal thickness in typical age related macular degeneration and polypoidal choroidal vasculopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2011, 249( 8): 1123-1128.
[53]
Ashley W, Alison B. Retinal and choroidal thickness in early age-related macular degeneration[J]. Am J Ophthalmol, 2011, 152(6): 1030-1038.
[54]
Taban M, Williams D, Smith SD, et al. Assessing the reliability of automated OCT retinal thickness measurements in patients with choroidal neovascularization due to agerelated macular degeneration[J]. Ophthalmic Surg Lasers Imaging, 2010, 41(2): 166-174.
[55]
Sarks SH. Ageing and degeneration in the macular region:a clinic-opathological study[J]. Br J Opthalmol, 1976, 60(5): 324-341.
[1] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[2] 刘镭, 杨昕, 许晓华, 林胜谋, 熊初琴, 农丽录, 董振宇, 李胜利. 中孕期胎儿鼻前皮肤厚度及鼻骨长度筛查胎儿染色体病的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(05): 506-510.
[3] 李敏, 邱逦. 健康人群指甲与邻近组织超声测值的初步研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 449-454.
[4] 胡守容, 王玥, 陈广兰, 杨俊英, 蒋璐, 王慧芳. 经直肠双平面高频超声对正常女性阴道形态的评估[J]. 中华医学超声杂志(电子版), 2021, 18(11): 1056-1060.
[5] 李殷南, 王乾, 孙宾. 膀胱壁、逼尿肌壁厚度与老年女性膀胱过度活动症相关性研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(02): 178-182.
[6] 江卓婷, 高妍, 李春晖. 相干光断层扫描在角膜屈光手术术前筛查中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 247-251.
[7] 王姮, 张瑞恒, 刘月明, 魏文斌. 巩膜外敷贴放射后补充经瞳孔温热疗法治疗脉络膜黑色素瘤的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 18-23.
[8] 魏航, 赵明威, 曲进锋. 基于文本挖掘数据库干性年龄相关性黄斑变性免疫反应核心基因与关键通路的生物信息学分析[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 262-267.
[9] 王宛婷, 梁婷, 孙蕾. 年龄相关性黄斑变性的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 183-187.
[10] 黄瑶, 侯思梦, 魏文斌. 继发黄斑水肿的视网膜中央静脉阻塞患眼脉络膜厚度的变化及雷珠单抗治疗效果的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 134-139.
[11] 王如海, 孙菲琳, 杨震, 韩超, 于强, 胡海成. 硬膜下积液厚度对创伤性硬膜下积液转化为慢性硬膜下血肿的预测价值[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 227-231.
[12] 田海燕, 雪梅, 肖霄, 刘千榕, 王亚楠. 颈部透明层厚度、心脏三尖瓣反流和静脉导管血流联合Z评分对胎儿先天性心脏病的诊断效能分析[J]. 中华临床医师杂志(电子版), 2022, 16(05): 405-409.
[13] 李刚, 耿安姝, 白若濛, 赵立华. 屈光不正人群角膜上皮分布特征与角膜厚度的相关性研究[J]. 中华临床医师杂志(电子版), 2021, 15(11): 852-857.
[14] 黄薇, 王宏宇, 刘金波, 刘欢, 赵红薇, 赵娜. 高血压患者颈动脉内中膜厚度与心踝血管指数的相关性[J]. 中华临床医师杂志(电子版), 2021, 15(07): 481-484.
[15] 娄喆, 马春燕. 超声检查对颈动脉粥样硬化评估的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(03): 197-201.
阅读次数
全文


摘要