切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2024, Vol. 14 ›› Issue (01) : 34 -40. doi: 10.3877/cma.j.issn.2095-2007.2024.01.006

论著

四种人工晶状体计算公式对三联白内障玻璃体切除术后屈光状态预测准确性的临床研究
何渊1, 万修华1, 于楚瑶1, 朱静芬2, 赵世强1, 宋旭东1, 刘武1,()   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 眼科学与视觉科学北京市重点实验室
    2. 200025 上海交通大学医学院 公共卫生学院
  • 收稿日期:2024-02-03 出版日期:2024-02-28
  • 通信作者: 刘武
  • 基金资助:
    北京市医院管理中心临床医学发展专项经费项目(XMLX202133)

The accuracy of four artificial lens calculation formulas in predicting refractive status after vitrectomy for triple cataract patients

Yuan He1, Xiuhua Wan1, Chuyao Yu1, Jingfen Zhu2, Shiqiang Zhao1, Xudong Song1, Wu Liu1,()   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Sciences Key Laboratory, Capital Medical University, Beijing 100730, China
    2. School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Received:2024-02-03 Published:2024-02-28
  • Corresponding author: Wu Liu
引用本文:

何渊, 万修华, 于楚瑶, 朱静芬, 赵世强, 宋旭东, 刘武. 四种人工晶状体计算公式对三联白内障玻璃体切除术后屈光状态预测准确性的临床研究[J]. 中华眼科医学杂志(电子版), 2024, 14(01): 34-40.

Yuan He, Xiuhua Wan, Chuyao Yu, Jingfen Zhu, Shiqiang Zhao, Xudong Song, Wu Liu. The accuracy of four artificial lens calculation formulas in predicting refractive status after vitrectomy for triple cataract patients[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(01): 34-40.

目的

探讨BU Ⅱ、Kane、EVO 2.0及LSF等4种新型人工晶状体(IOL)计算公式对超声乳化白内障吸除联合后房型IOL植入、玻璃体切除及晶状体后囊膜切除三联手术后屈光状态预测的准确性。

方法

收集2021年9月至2022年10月期间在首都医科大学附属北京同仁眼科中心就诊的眼科患者104例(104只眼)。其中,男性26例(26只眼),女性74例(74只眼);年龄56~87岁,平均年龄(68.4±6.3)岁。根据所行手术方式不同将患者分为对照组和三联组。对照组患者行超声乳化白内障吸除联合后房型IOL植入术,三联组患者行超声乳化白内障吸除联合后房型IOL植入、玻璃体切除及晶状体后囊膜切除三联手术。使用BU Ⅱ公式计算两组患者IOL的屈光度,并计算Kane、EVO 2.0及LSF等3种IOL公式的预测结果。记录患者的年龄和性别,检测患者术眼手术前和术后1个月的最佳矫正视力(BCVA)、眼轴长度、角膜曲率,前房深度、晶状体厚度、水平角膜直径及植入IOL的屈光度,计算术后1个月两组患者的屈光误差(PE)、PE的标准差(SD)、平均绝对误差(MAE)及绝对误差中位数(MedAE);计算PE在±0.25 D、±0.50 D、±0.75 D及±1.00 D范围内的百分比,BU Ⅱ、Kane、EVO 2.0及LSF等4种公式的公式性能指数(FPI)。年龄、眼轴长度、角膜曲率,前房深度、晶状体厚度、水平角膜直径及植入IOL的屈光度等均符合正态分布,以±s表示,组间比较采用独立样本t检验,BCVA采用中位数和四分位间距描述,组间比较采用Mann-Whitney U检验。性别和眼别采用例数和百分比描述,组间比较采用卡方检验。ME值与零取值的比较采用单样本t检验。不同公式的MAE及MedAE采用Friedman test进行比较。PE在不同范围内百分比的比较采用Cochran Q检验。

结果

在对照组中,BU Ⅱ、LSF、Kane及EVO 2.0等4种公式的PE分别为(0.032±0.405)D、(0.056±0.389)D、(0.186±0.392)D及(0.197±0.395)D,在三联组分别为(-0.084±0.656)D、(-0.041±0.652)D、(0.047±0.637)D及(0.050±0.666)D。对照组中,Kane和EVO2.0公式显示出远视系统误差,差异具有统计学意义(t=3.414,3.599;P<0.05);BU Ⅱ和LSF公式在对照组中的系统误差无统计学意义(t=0.570,1.029;P>0.05)。在三联组中,BU Ⅱ、Kane、EVO 2.0及LSF等4种公式的系统误差均无统计学意义(t=-0.920,0.530,0.545,-0.450;P>0.05)。BU Ⅱ、LSF、Kane及EVO 2.0等4种公式的PE,三联组与对照组比较均偏向近视,但并无统计学意义(t=1.641,1.526,2.315,1.624;P>0.05)。BU Ⅱ、Kane、EVO 2.0及LSF等4种公式的FPI,在对照组中的表现均高于三联组。对照组和三联组BU Ⅱ公式的FPI分别为0.648和0.393,均位列第一;LSF公式的FPI分别为0.526和0.381,位列第二;Kane公式的FPI分别为0.479和0.351,位列第三;EVO 2.0公式的FPI分别为0.463和0.346,位列第四。

结论

术后1个月时,在三联组中应用BU Ⅱ、LSF、Kane及EVO 2.0公式均未显示出远视或近视漂移。其中,预测准确性表现最优的是BU Ⅱ公式。

Objective

To explore the accuracy of four new intraocular lens (IOL) calculation formulas, including BU Ⅱ, Kane, EVO 2.0, and LSF, in predicting refractive status after phacoemulsification cataract extraction combined with posterior chamber IOL implantation, vitrectomy, and posterior capsule resection triple surgery.

Methods

A total of 104 ophthalmic patients (104 eyes) who visited the Beijing Tongren Eye Center affiliated with Capital Medical University from September 2021 to October 2022 were collected. Among them, there were 26 males (26 eyes) and 74 females (74 eyes) with an average age of (68.4±6.3) years (ranging from 56 to 87 years old). According to the surgical methods, they were divided into a control group and a triple group. The patients of control group underwent phacoemulsification cataract extraction combined with posterior chamber IOL implantation, while those of the triple group underwent phacoemulsification cataract extraction combined with posterior chamber IOL implantation, vitrectomy, and posterior capsule resection triple surgery. The diopter of IOL for all patients using the BU Ⅱ formula and prediction results of Kane, EVO 2.0 and LSF were calculated, respectively. The patient′s age and gender was recorded, and the best corrected visual acuity (BCVA), axial length, corneal curvature, anterior chamber depth, lens thickness, horizontal corneal diameter, and refractive error of implanted IOL before an dafter surgery for 1 month were measured, and the refractive error (PE) of the two groups of patients at 1 month after surgery and the standard deviation (SD), mean absolute error (MAE), and median absolute error (MedAE) of PE and the percentage of PE within the range of ±0.25 D, ±0.50 D, ±0.75 D, and ±1.00 D, formula performance index (FPI) for BU Ⅱ, Kane, EVO 2.0, and LSF formulas were calculated. Age, axial length, corneal curvature, anterior chamber depth, lens thickness, horizontal corneal diameter, and refractive index of implanted IOL all followed a normal distribution, were expressed as ±s and compared by independent sample t-test for inter group. BCVA was described using median and interquartile spacing, and compared by Mann′s-Whitney U test. Gender and eye type were described using percentages, and compared by chi square tests. ME values and zero values were compared by a single sample t test. The MAE and MedAE of different formulas were compared by Friedman test. The percentages of PE within different ranges was compared by Cochran Q test.

Results

The PE values for four formulas, BU Ⅱ, LSF, Kane, and EVO 2.0 in the control group, were (0.032±0.405)D, (0.056±0.389)D, (0.186±0.392)D, and (0.197±0.395)D, respectively. In the triple group, those were (-0.084±0.656)D, (-0.041±0.652)D, (0.047±0.637)D, and (0.050±0.666)D, respectively. In the control group, there was a statistically significant difference in farsightedness system error between Kane and EVO2.0 formulas (t=3.414, 3.599; P<0.05). The systematic error of BU Ⅱ and LSF formulas in the control group was not statistically significant (t=0.570, 1.029; P>0.05). In the triple group, the systematic errors of four formulas were not statistically significant (t=-0.920, 0.530, 0.545, -0.450; P>0.05). The PE of four formulas showed a tendency towards myopia in the triple group compared to the control group, but there was no statistically significant difference (t=1.641, 1.526, 2.315, 1.624; P>0.05). The FPI performance of four formulas was higher in the control group than that of the triple group. The FPI of the BU Ⅱ formula for the control group and triple group were 0.648 and 0.393, respectively, ranking first. The FPI of the LSF formula were 0.526 and 0.381, respectively, ranking second. The FPI of Kane′s formula were 0.479 and 0.351, respectively, ranking third. The FPI of EVO 2.0 formula were 0.463 and 0.346, respectively, ranking fourth.

Conclusions

After surgeryt for one month, BU Ⅱ, LSF, Kane, and EVO 2.0 formulas applied in the triple group do not show hyperopia or myopia drift. Among them, the BU Ⅱ formula has the best performance in predicting accuracy.

表1 对照组和三联组术前基本情况的比较
表2 对照组和三联组术前基本情况的比较
图1 对照组与三联组患者使用四种公式计算人工晶状体屈光度预测误差的比较
图2 对照组和三联组患者在给定范围内使用四种公式计算人工晶状体屈光度预测误差百分比、平均绝对误差及绝对误差中位数的比较 图2A示对照组在给定范围内使用四种公式计算人工晶状体屈光度预测误差百分比的比较;图2B示三联组在给定范围内使用四种公式计算人工晶状体屈光度预测误差百分比的比较;图2C示对照组与三联组使用四种公式计算人工晶状体屈光度平均绝对误差的比较;图2D示对照组与三联组使用四种公式计算人工晶状体屈光度绝对误差中位数的比较
[1]
Cherfan GM, Michels RG, De BS, et al. Nuclear sclerotic cataract after vitrectomy for idiopathic epiretinal membranes causing macular pucker[J]. Am J Ophthalmol, 1991, 111(4): 434-438.
[2]
Jackson TL, Nicod E, Angelis A, et al. Pars plana vitrectomy for vitreomacular traction syndrome: a systematic review and metaanalysis of safety and efficacy[J]. Retina, 2013, 33(10): 2012-2017.
[3]
Hertzberg SV, Nina CB, Bragadottir R, et al. Cost-effectiveness of the triple procedure-phacovitrectomy with posterior capsulotomy compared to phacovitrectomy and sequential procedures[J]. Acta ophthalmol, 2020, 98(6): 592-602.
[4]
Toda J, Kato S, Oshika T, et al. Posterior capsule opacification after combined cataract surgery and vitrectomy[J]. J Cataract Refr Surg, 2007, 33(1): 104-107.
[5]
Steinert RF, Puliafito CA, Kumar SR, et al. Cystoid Macular Edema, Retinal Detachment, and Glaucoma after Nd:YAG Laser Posterior Capsulotomy[J]. Am J Ophthalmol, 1991, 112(4): 373-380.
[6]
Framme C, Hoerauf H, Roider J, et al. Delayed intraocular lens dislocation after neodymium:YAG capsulotomy[J]. J Cataract Refr Surg, 1998, 24(11): 1541-1543.
[7]
Melles RB, Kane JX, Olsen T, et al. Update on Intraocular Lens Calculation Formulas[J]. Ophthalmology, 2019, 126(9): 1334-1335.
[8]
Connell BJ, Kane JX. Comparison of the Kane formula with existing formulas for intraocular lens power selection[J]. BMJ Open Ophthalmol, 2019, 4(1): e000251.
[9]
Ladas JG, Siddiqui AA, Devgan U, et al. A 3-D " Super Surface" Combining Modern Intraocular Lens Formulas to Generate a " Super Formula" and Maximize Accuracy[J]. JAMA Ophthalmol, 2015, 133(12): 1431-1436.
[10]
Barrett GD, Wang Li, Assia EI, et al. Protocols for Studies of Intraocular Lens Formula Accuracy[J]. Am J Ophthalmol, 2016.164(3): 149-150.
[11]
Wang L, Koch DD, Hill W, et al. Pursuing perfection in intraocular lens calculations: III. Criteria for analyzing outcomes[J]. J Cataract Refr Surg, 2017, 43(8): 999-1002.
[12]
Haigis W. Which formula works best for IOL calculation? ESCRS ON DEMAND[OL]. accessed January 26, 2022).

URL    
[13]
Koch DD, Hill W, Abulafia A, et al. Pursuing perfection in intraocular lens calculations: I. Logical approach for classifying IOL calculation formulas[J]. J Cataract Refr Surg, 2017, 43(6): 717-718.
[14]
Mayer-Xanthaki CF, Hirnschall N, Gabriel M, et al. Influence of combined phacovitrectomy without tamponade on intraocular lens displacement and postoperative refraction[J]. Acta ophthalmol, 2022, 100(7): e1518-e1521.
[15]
Takahashi Y, Hirano T, Nakamura M, et al. Temporal Change in Anterior Chamber Depth after Combined Vitrectomy and Cataract Surgery Using Different Sizes of Intraocular Lens[J]. J Clinl Med, 2022, 11(21): 6430-6434.
[16]
Miele A, Fumagalli C, Abbruzzese G, et al. Biometric refractive error after cataract and retina surgery: a systematic review and a benchmark proposal[J]. Eye, 202135(11):3049-3055.
[17]
Vounotrypidis E, Shajari M, Muth DR, et al. Refractive outcomes of eight biometric formulas in combined phacovitrectomy with ILM-peeling for epiretinal membrane[J]. J Cataract Refr Surg, 2020, 46(4): 591-597.
[18]
Katz G, Zhalka F, Veksler R, et al. The Role of Anterior Chamber Depth on Post-operative Refractive Error After Phacovitrectomy[J]. Clin Ophthalmol, 2021, 20(15): 2111-2115.
[19]
Hamoudi H, La CM. Refractive changes after vitrectomy and phacovitrectomy for macular hole and epiretinal membrane[J]. J Cataract Refr Surg, 2013, 39(6): 942-947.
[20]
Nobuhiko S, Taku W, Hirokazu S, et al. Optical Biometry-Based Intraocular Lens Calculation and Refractive Outcomes after Phacovitrectomy for Rhegmatogenous Retinal Detachment and Epiretinal Membrane[J].Sci Rep2018, 8(1): 11319.
[21]
Sato T, Iimori E, Hayashi K. Prospective comparison of accuracy of intraocular lens calculation formulas in phacovitrectomy: a pilot study in a real-world clinical practice[J]. Graef Arch Clin Exp, 2023, 261(1): 77-84.
[22]
Crincoli E, Savastano A, Ferrara S, et al. Refractive outcome in combined phacovitrectomy: Anterior segment changes and corrective factor for IOL power calculation improvement[J]. Eur J Ophthal, 2023, 34(2): 549-557.
[23]
Chatzimichail E, Wertheimer C, Kilani A, et al. Influence of endotamponade on anterior chamber depth and refractive outcome after combined phacovitrectomy: case-control study[J]. J Cataract Refr Surg, 2023, 49(8): 864-868.
[24]
Hipólito-Fernandes D, Elisa LM, Maleita D, et al. Intraocular lens power calculation formulas accuracy in combined phacovitrectomy: an 8-formulas comparison study[J]. Int J Retina Vitr, 2021, 7(1): 47-56.
[25]
Tranos PG, Allan B, Balidis M, et al. Comparison of postoperative refractive outcome in eyes undergoing combined phacovitrectomy vs cataract surgery following vitrectomy[J]. Graef Arch Clin Exp, 2020258(5): 987-993.
[26]
Melles RB, Holladay JT, Chang WJ. Accuracy of Intraocular Lens Calculation Formulas[J]. Ophthalmology, 2018, 125(2): 169-178.
[1] 王玥, 万修华. 重视晶状体蛋白聚集在白内障形成中的作用[J]. 中华眼科医学杂志(电子版), 2024, 14(01): 1-5.
[2] 左佳木, 万修华. 防治白内障术后急性感染性眼内炎的新进展[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 371-375.
[3] 谢家兴, 李学民, 敖明昕. 人工智能在白内障诊断领域的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 361-365.
[4] 张志宏, 吕爱国, 路平, 郭丽, 崔宏宇, 胡建华, 王立芳, 王延岭, 范肃洁. 超声乳化白内障吸除联合后房型人工晶状体植入及前房角镜下前房角分离术治疗急性闭角型青光眼合并白内障的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 263-267.
[5] 孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华. 关注后发性白内障的发病机制及防控措施[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 193-198.
[6] 林明玥, 周祁, 刘歆, 曲申, 陈开传, 吕筱, 韩雯婷, 毕燕龙. 术中光学相干断层扫描辅助玻璃体Berger腔切除术的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 199-204.
[7] 陈灏楠, 肖伟. 透明角膜切口对白内障术后角膜散光的影响及其精准测量的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 172-176.
[8] 方蕊, 宋旭东. 非编码核糖核酸与白内障相关的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 94-98.
[9] 郝壮, 马济远, 何梦梅, 李兴育, 陆新婷, 武静, 周健. 迟发性囊袋阻滞综合征临床特征、治疗方法及其疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 70-75.
[10] 刘兆川, 宋旭东. 重视虹膜松弛综合征围手术期的防治[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 1-5.
[11] 万修华. 角膜移植术后白内障吸除联合张力环及后房型人工晶状体植入术[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 0-0.
[12] 蒋晨, 万新娟, 谢小东, 丁琳. 糖化血红蛋白、硫氧还蛋白、硫氧还蛋白互作蛋白与皮质性白内障的关系[J]. 中华临床医师杂志(电子版), 2022, 16(09): 914-918.
[13] 付鹏, 沈念, 黄艳玲, 杨水平, 万小波. 外伤性晶状体脱位合并周边隐匿性视网膜病变的临床特征及预后分析[J]. 中华临床医师杂志(电子版), 2022, 16(06): 536-540.
[14] 彭丽, 于娜, 吴雪莲. 老年白内障患者超声乳化术后眼部疼痛原因分析[J]. 中华老年病研究电子杂志, 2023, 10(02): 49-51.
[15] 刘天龙. 改良型超声乳化手术治疗高度近视合并白内障疗效观察[J]. 中华老年病研究电子杂志, 2023, 10(01): 30-33.
阅读次数
全文


摘要