切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2020, Vol. 10 ›› Issue (02) : 90 -96. doi: 10.3877/cma.j.issn.2095-2007.2020.02.005

论著

康柏西普玻璃体腔内注射联合阈值下微脉冲激光治疗糖尿病黄斑水肿的临床研究
方立建1, 魏文斌2,()   
  1. 1. 102401 北京市房山区良乡医院眼科
    2. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 眼科学与视觉科学北京市重点实验室
  • 收稿日期:2020-03-15 出版日期:2020-04-28
  • 通信作者: 魏文斌
  • 基金资助:
    北京市医院管理局"登峰"人才培养计划(DFL20150201); 北京市自然科学基金(7151003); 北京市卫生系统高层次卫生技术人才培养计划(2014-2-003); 首都卫生发展科研专项项目(2016-1-2051)

The effect of Conbercept combined with subthreshold micropulse laser photocoaguIation on diabetic macular edema

Lijian Fang1, Wenbin Wei2,()   

  1. 1. Department of Ophthalmology, Liangxiang Hospital of Beijing Fangshan District, Beijing 102401, China
    2. Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab., Beijing 100730, China
  • Received:2020-03-15 Published:2020-04-28
  • Corresponding author: Wenbin Wei
引用本文:

方立建, 魏文斌. 康柏西普玻璃体腔内注射联合阈值下微脉冲激光治疗糖尿病黄斑水肿的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(02): 90-96.

Lijian Fang, Wenbin Wei. The effect of Conbercept combined with subthreshold micropulse laser photocoaguIation on diabetic macular edema[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2020, 10(02): 90-96.

目的

观察玻璃体腔内注射康柏西普联合阈值下微脉冲激光(SMLP)治疗糖尿病黄斑水肿(DME)的临床疗效。

方法

选取2017年2月至2019年9月于北京市房山区良乡医院眼科就诊的DME患者47例(47只眼)作为研究对象。其中,男性25例(25只眼),女性22例(22只眼),年龄42~77岁,平均年龄(61.6±9.1)岁。根据治疗方法的不同将DME患者分为联合治疗组和注射药物组。其中,联合治疗组26例(26只眼),注射药物组21例(21只眼)。联合治疗组,于SMLP治疗前1周行玻璃体腔内注射康柏西普治疗;注射药物组,单纯行1次玻璃体腔内注射康柏西普治疗。检测全部患者治疗前、治疗后1个月、治疗后2个月、治疗后3个月及治疗后4个月的的最佳矫正视力(BCVA)和黄斑中心凹视网膜厚度(CFT)。采用均数±标准差描述患者的年龄、眼压、BCVA及CFT。组间比较采用独立样本t检验;组内及组间治疗前后BCVA和CFT的比较,采用两因素重复测量方差分析。

结果

联合治疗组治疗后1个月、治疗后2个月、治疗后3个月及治疗后4个月的BCVA分别为(0.47±0.16)、(0.40±0.16)、(0.40±0.15)及(0.43±0.16);CFT分别为(358.5±51.2)μm、(317.0±43.6)μm、(329.1±32.7)μm及(322.4±41.8)μm。注射药物组治疗后1个月、治疗后2个月、治疗后3个月及治疗后4个月的BCVA分别为(0.54±0.17)、(0.63±0.19)、(0.66±0.18)及(0.68±0.17);CFT分别为(382.9±59.2)μm、(445.0±69.1)μm、(463.7±64.1)μm及(468.7±64.3)μm。SMLP治疗后1个月,两组患者BCVA和CFT的组间比较,差异均无统计学意义(t=2.593,2.305;P>0.05)。SMLP治疗后2个月、治疗后3个月及治疗后4个月两组患者的BCVA比较,差异均有统计学意义(t=21.683,29.321,25.948;P<0.05);两组患者的CFT比较,差异有统计学意义(t=59.960,86.855,88.537;P<0.05)。联合治疗组患者治疗后1个月、治疗后2个月、治疗后3个月及治疗后4个月的BCVA比治疗前提高,差异有统计学意义(t=11.316,10.276,9.718,7.518;P<0.05);患者的CFT比治疗前均下降,差异有统计学意义(t=11.863,19.176,16.601,16.928;P<0.05)。注射药物组患者在治疗后1个月时BCVA有改善,差异有统计学意义(t=5.966,P<0.05);而治疗后2个月、治疗后3个月及治疗后4个月时与治疗前比较,BCVA差异无统计学意义(t=1.826,-1.369,-1.826;P>0.05);患者的CFT在治疗后1个月时显著改善,差异有统计学意义(t=9.320,P<0.05);而治疗后2个月、治疗后3个月及治疗后4个月时与治疗前比较,CFT差异无统计学意义(t=1.725,-0.883,-1.777;P>0.05)。

结论

玻璃体腔内注射康柏西普联合SMLP疗法与单纯康柏西普玻璃体腔内注射疗法均能在短期内提高DME患者的视力,减轻其黄斑水肿,且具有良好的安全性,但前者的疗效更为稳定持久。

Objective

The aim of this study was to observe the clinical efficacy of intravitreal injection of Conbercept combined with subthreshold micropulse laser (SMLP) in the treatment of diabetic macular edema (DME).

Methods

It was a retrospective analysis.Forty-seven patients (47 eyes) with diabetic macular edema (DME) were selected from Department of Ophthalmology in Liangxiang Hospital of Beijing Fangshan District from February 2017 to September 2019. Among them, 25 cases (25 eyes) were male, 22 cases (22 eyes) were female. The average age of the patients was (61.6±9.1) years-old. They were divided into combined treatment group (26 eyes) and injection group (21 eyes) according to the different clinical treatment. The patients in the combined treatment group were treated with intravitreal injection of Conbercept one week before SMLP and the patients in the injection group only were treated with intravitreal injection of Conbercept. There were 26 cases (26 eyes) in the combined treatment group, including 14 males (14 eyes) and 12 females (12 eyes), with an average age of (61.6±8.0) years. There were 21 patients (21 eyes) in the injection group, including 11 males (11 eyes) and 10 females (10 eyes), with an average age of (61.7±10.5) years-old. The best corrected visual acuity (BCVA) were measured by standard logarithmic visual acuity chart and central fovea retina thickness (CFT) were measured by optical coherence tomography (OCT). The CFT and BCVA were compared between two groups at 1, 2, 3 and 4 months after treatment. The data of age, intraocular pressure, BCVA and CFT of two groups were described by mean±standard deviation. Independent sample T test was used for comparison between groups. The BCVA and CMT within and between groups were compared by two-way ANOVA before and after treatment.

Results

In the combined treatment group, the BCVA at 1, 2, 3 and 4 months after treatment were (0.47±0.16), (0.40±0.16), (0.40±0.15), (0.43±0.16) and the CFT were (358.5±51.2) μm, (317.0±43.6) μm, (329.1±32.7) μm and (322.4±41.8) μm, respectively. In the injection group, the BCVA at 1, 2, 3 and 4 months after treatment were (0.54±0.17), (0.63±0.19), (0.66±0.18) and (0.68±0.17), respectively, and the CFT at 1, 2, 3 and 4 months after treatment were (382.9±59.2) μm, (445.0±69.1) μm, (463.7±64.1) μm and (468.7±64.3) μm, respectively. There was no significant difference in BCVA and CFT between two groups one month after SMLP treatment (t=2.593, 2.305; P>0.05). There was significant difference between two groups in terms of BCVA at 2, 3 and 4 months after SMLP treatment (t=21.683, 29.321, 25.948; P<0.05), and there was significant difference between two groups in terms of CFT at 2, 3 and 4 months after SMLP treatment(t=59.960, 86.855, 88.537; P<0.05). Compared with those before treatment, BCVA in the combined treatment group increased at 1, 2, 3 and 4 months after treatment with the significant difference between them (t=11.316, 10.276, 9.718, 7.518; P<0.05); and CFT decreased with the significant difference between them(t=11.863, 19.176, 16.601, 16.928; P<0.05). The injection group only showed an improvement in BCVA at 1 month after anti-VEGF treatment with the significant difference between them (t= 5.966, P<0.05). However, there was no significant difference in BCVA at 2, 3 and 4 months after treatment (t=1.826, -1.369, -1.826; P>0.05), CFT was significantly improved at 1 month after injection(t=9.320, P<0.05), but there was no significant difference at 2, 3 and 4 months after injection (t=1.725, -0.883, -1.777; P>0.05).

Conclusions

Both intravitreal injection of Conbercept combined with SMLP and single intravitreal injection of Conbercept could be of benefit to improve the visual acuity of DME patients in a short time, reduce their macular edema, and have good safety, but the effect of intravitreal injection was more stable and lasting.

表1 联合治疗组与注射药物组患者一般资料的比较(±s)
表2 两组患者治疗前后最佳矫正视力的比较(±s)
图2 两组患者治疗前后黄斑中心凹视网膜厚度的比较 图中a、b、c及d,以字母标记法展示的时间点的组内比较;▲表示联合治疗组与注射药物组的组间比较
表3 两组患者治疗前后黄斑中心凹视网膜厚度的比较(±s,μm)
[1]
Bandello F, Battaglia MB, Lanzetta P, et al. Diabetic Macular Edema[J]. Dev Ophthalmol, 2010, 47(8): 73-110.
[2]
Cohen SR, Gardner TW. Diabetic retinopathy and diabetic macular edema[J]. Dev Ophthalmol, 2016, 55(19): 137-146.
[3]
Zhao Y, Singh RP. The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy[J]. Drugs Context, 2018, 7: 212532.
[4]
Sivaprasad S, Dorin G. Subthreshold diode laser micropulse photocoagulation for the treatment of diabetic macular edema[J]. Expert Rev Med Devices, 2012, 9(2): 189-197.
[5]
Scholz P, Altay L, Fauser S. A Review of Subthreshold Micropulse Laser for Treatment of Macular Disorders[J]. Adv Ther, 2017, 34(7): 1528-1555.
[6]
Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema. ETDRS report number 1[J]. Arch Ophthalmol, 1985, 103(12): 1796-1806.
[7]
Erol N, Gursoy H, Kimyon S, et al. Vision,retinal thickness,and foveal a vascular zone size after intravitreal bevacizumab for diabetic macular edema[J]. Adv Ther, 2012, 29(4): 359-369.
[8]
Goebel W, Kretzchmar-Gross T. Retinal thickness in diabetic retinopathy:a study using optical coherence tomography(OCT)[J]. Retina, 2002, 22(6): 759-767.
[9]
张莉,陈燕云,田蓓. 玻璃体腔内注射康柏西普治疗不同类型视网膜静脉阻塞合并黄斑水肿的疗效观察[J/CD]. 中华眼科医学杂志(电子版)20177(5):217-221.
[10]
Klein BEK. Overview of epidemiologic studies of diabetic retinopathy[J]. Ophthalmic Epidemiol, 2007, 14(4): 179-183.
[11]
Tan GS, Cheung N, Simó R, et al. Diabetic macular oedema[J]. Lancet Diabetes Endocrinol, 2017, 5(2): 143-155.
[12]
Xu Y, Wang L, He J, et al.Prevalence and control of diabetes in Chinese adults[J].JAMA, 2013, 310(9): 948-959.
[13]
洪天配,杨进. 中国糖尿病防治的转化医学研究:机遇与挑战[J]. 中华糖尿病杂志20179(12):729-731.
[14]
Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions[J]. Prog Retin Eye Res, 2013, 34(2): 19-48.
[15]
Murakami T, Frey T, Lin C, et al. Protein kinase cβphosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo[J]. Diabetes, 2012, 61(6): 1573-1583.
[16]
Nguyen QD, Shah SM, Khwaja AA, et al. Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study[J]. Ophthalmology, 2010, 117(11): 2146-2151.
[17]
Regnier S, Malcolm W, Allen F, et al. Efficacy of anti-VEGF and laser photocoagulation in the treatment of visual impairment due to diabetic macular edema: a systematic review and network meta-analysis[J]. PloS one, 2014, 9(7): e102309.
[18]
Jonas JB, Jonas RA, Neumaier M, et al.Cytokine concentration in aqueous humor of eyes with diabetic macular edema[J]. Retina, 2012, 32(10): 2150-2157.
[19]
Funatsu H, Noma H, Mimura T, et al. Association of vitreous inflammatory factors with diabetic macular edema[J]. Ophthalmology, 2009, 116(1): 73-79.
[20]
Nauck M, Karakiulakis G, Perruchoud AP, et al. Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells[J]. Eur J Pharmacol, 1998, 341(2): 309-315.
[21]
Mansouri A, Sampat KM, Malik KJ, et al. Efficacy of subthreshold micropulse laser in the treatment of diabetic macular edema is influenced by pre-treatment central foveal thickness[J]. Eye, 2014, 28(12): 1418-1424.
[22]
Inagaki K, Ohkoshi K, Ohde S, et al. Comparative efficacy of pure yellow (577nm) and 810nm subthreshold micropulse laser photocoagulation combined with yellow (561-577nm) direct photocoagulation for diabetic macular edema[J]. Jpn. J. Ophthalmol, 2015, 59(1): 21-28.
[23]
Fazel F, Bagheri M, Golabchi K, et al. Comparison of subthreshold diode laser micropulse therapy versus conventional photocoagulation laser therapy as primary treatment of diabetic macular edema[J]. J. Curr. Ophthalmol. 2016, 28(4): 206-211.
[24]
Golan S, Loewenstein A. Surgical treatment for macular edema[J]. Semin Ophthalmol, 2014, 29(4): 242-256.
[25]
Laidlaw DA. Vitrectomy for diabetic macular oedema[J]. Eye (Lond), 2008, 22(10): 1337-1341.
[26]
Christoforidis JB, D'Amico DJ. Surgical and other treatments of diabetic macular edema: an update[J].Int Ophthalmol Clin, 2004, 44(1): 139-160.
[27]
Committee DR, Haller JA, Qin H , et al.. Vitrectomy outcomes in eyes with diabetic macular edema and vitreomacular traction[J]. Ophthalmology, 2010, 117(6): 1087-1093.
[28]
Simunovic MP, Hunyor AP, Ho IV. Vitrectomy for diabetic macular edema: a systematic review and meta-analysis[J]. Can J Ophthalmol, 2014, 49(2): 188-195.
[29]
Pankratov MM. Pulsed delivery of laser energy in experimental thermal retinal photocoagulation[J]. Proc Soc Photo-Optical Instrum Eng, 1990, 1202(6): 205-213.
[30]
Wu Y, Ai P, Ai Z, et al. Subthreshold diode micropulse laser versus conventional laser photocoagulation monotherapy or combined with anti-VEGF therapy for diabetic macular edema: A Bayesian network meta-analysis[J]. Biomed Pharmacother, 2018, 97(1): 293-299.
[31]
Ohkoshi K, Yamaguchi T. Subthreshold micropulse diode laser photocoagulation for diabetic macular edema in Japanese patients[J]. Am J Ophthalmol, 2010, 149(1): 133-139.
[32]
Luttrull JK, Sinclair SH, Elmann S, et al. Low incidence of choroidal neovascularization following subthreshold diode micropulse laser (SDM) in high-risk AMD[J]. PLoS One, 2018, 13(8): e0202097.
[33]
Moore SM, Chao DL. Application of subthreshold laser therapy in retinal diseases: a review[J]. Expert Rev Ophthalmol, 2018, 13(6): 311-320.
[34]
Venkatesh P, Ramanjulu R, Azad R, et al. Subthreshold micropulse diode laser and double frequency neodymium:YAG laser in treatment of diabetic macular edema:a prospective,randomized study using multifocal electroretinography [J].Photomed Laser Surg, 2011, 29(11): 727-733.
[35]
Friberg TR, Karatza EC. The treatment of macular disease using a micropulsed and continuous wave 810 nm diode laser[J].Ophthalmology, 1997, 104(12): 2030-2038.
[36]
Laursen ML, Moeller F, Sander B,et al. Subthreshold micropulse diode laser treatment in diabetic macular oedema[J]. Br J Ophthalmol, 2004, 88(9): 1173-1179.
[37]
Lavinsky D, Cardillo JA, Melo LA, et al. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema[J].Invest Ophthalmol Vis Sci, 2011, 52(7): 4314-4323.
[38]
Figueira J, Khan J, Nunes S, et al. Prospective randomised controlled trial comparing subthreshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema[J]. Br J Ophthalmol, 2009, 93(10): 1341-1344.
[39]
Mansouri A, Sampat KM, Malik KJ, et al. Efficacy of subthreshold micropulse laser in the treatment of diabetic macular edema is influenced by pre-treatment central foveal thickness[J]. Eye(Lond), 2014, 28(12): 1418-1424.
[40]
Moisseiev E, Abbassi S, Thinda S, et al. Subthreshold micropulse laser reduces anti-VEGF injection burden in patients with diabetic macular edema[J].Eur J Ophthalmol, 201828 (1): 68-73.
[41]
Luttrull JK, Sramek C, Palanker D, et al. Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema[J].Retina, 2012, 32(2): 375-386.
[42]
丁国鹏,丁国龙,雷姝,等. 康柏西普联合577 nm微脉冲激光治疗糖尿病性黄斑水肿临床观察[J]. 国际眼科杂志2015,(11):1942-1944.
[43]
徐斌,戴奕娟,梁丽,等. 黄色微脉冲激光与传统格栅样激光光凝治疗糖尿病黄斑水肿疗效比较[J].中华眼底病杂志201329(1):18-20.
[44]
Farhad F, Majid B, Khodayar G, et al. Comparison of subthreshold diode laser micropulse therapy versus conventional photocoagulation laser therapy as primary treatment of diabetic macular edema[J]. Journal of Current Ophthalmology, 2016, 28(4): 206-211.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 刘佳璇, 何迈越, 李俏, 徐兵河. 阿帕替尼在晚期乳腺癌治疗中的临床研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(01): 1-5.
[3] 张梦璐, 邢泽宇, 王昕, 刘嘉琦, 刘刚, 王翔. 血管内皮生长因子在炎性乳腺癌中的应用[J]. 中华乳腺病杂志(电子版), 2021, 15(05): 302-306.
[4] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[5] 罗红, 袁昌亮, 陈岚. MiR-3202对高糖诱导的人视网膜血管内皮细胞损伤的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(03): 155-160.
[6] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[7] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[8] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[9] 李茹月, 李明华, 张凯文, 张悦, 牟大鹏, 王宁利, 刘含若. 早期筛查老年人群糖尿病视网膜病变的卫生经济学分析[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 216-221.
[10] 吴培培, 陈秀丽, 冯程程, 徐海峰. 玻璃体腔注射雷珠单抗联合地塞米松治疗视网膜中央静脉阻塞继发黄斑水肿的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 24-30.
[11] 李茹月, 刘含若. 卫生经济学评价常见致盲眼病筛查的进展[J]. 中华眼科医学杂志(电子版), 2021, 11(02): 94-98.
[12] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
[13] 冉启玉, 杜鹏宇, 孔蕾, 孙冰. 神经酰胺与糖尿病及其并发症关系研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 158-162.
[14] 杨莲, 罗争, 龚娇. 合并阻塞性睡眠呼吸暂停低通气综合征对老年人2型糖尿病视网膜病变的影响[J]. 中华老年病研究电子杂志, 2022, 09(03): 33-36.
[15] 李伟, 王青. 延续性护理干预对老年2型糖尿病视网膜病变患者血糖和视力水平的控制效果[J]. 中华老年病研究电子杂志, 2021, 08(03): 48-51.
阅读次数
全文


摘要