切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2017, Vol. 07 ›› Issue (03) : 103 -108. doi: 10.3877/cma.j.issn.2095-2007.2017.03.002

所属专题: 总编推荐 文献

论著

糖尿病视网膜病变与患者血清丝氨酸蛋白酶抑制剂、胰岛素抵抗及糖脂代谢相关性的研究
程金涛1,(), 李曼1, 张庆芬1, 涂云海2   
  1. 1. 276400 山东省临沂市中心医院眼科
    2. 325000 温州医科大学附属眼视光医院眼鼻相关专科
  • 收稿日期:2017-06-06 出版日期:2017-06-28
  • 通信作者: 程金涛
  • 基金资助:
    浙江省自然科学基金项目(LQ12H12004)

Association of diabetic retinopathy with serum serine protease inhibitors, insulin resistance and glycolipid metabolism

Jintao Cheng1,(), Man Li1, Qingfen Zhang1, Yunhai Tu2   

  1. 1. Department of Ophthalmology, Central Hospital of Linyi, Linyi 276400, China
    2. Eye and nose related specialty, the eye hospitial of wenzhou medical college, Wenzhou 325027, China
  • Received:2017-06-06 Published:2017-06-28
  • Corresponding author: Jintao Cheng
  • About author:
    Corresponding author: Cheng Jintao, Email:
引用本文:

程金涛, 李曼, 张庆芬, 涂云海. 糖尿病视网膜病变与患者血清丝氨酸蛋白酶抑制剂、胰岛素抵抗及糖脂代谢相关性的研究[J]. 中华眼科医学杂志(电子版), 2017, 07(03): 103-108.

Jintao Cheng, Man Li, Qingfen Zhang, Yunhai Tu. Association of diabetic retinopathy with serum serine protease inhibitors, insulin resistance and glycolipid metabolism[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2017, 07(03): 103-108.

目的

研究2型糖尿病视网膜病变(DR)患者血清腹腔脂肪型丝氨酸蛋白酶抑制剂(Vaspin)水平的变化,并分析DR与糖脂代谢、胰岛素敏感性等的相关性,从而进一步探讨Vaspin在2型DR发生发展中所起的作用。

方法

选取山东省临沂市中心医院眼科2014年1月至2016年12月临床检查确诊为DR的150例2型糖尿病患者的临床资料。将患者分为无DR(NDR)组、非增生型DR(NPDR)组及增生型DR(PDR)组,每组均为50例(100只眼)。另选择同期健康体检者50名作为对照组。全部入选的糖尿病患者均行视力、眼压、裂隙灯显微镜、间接检眼镜及荧光素眼底血管造影检查。记录纳入研究者的年龄、2型糖尿病病程、身高、体重及体重指数(BMI)。测定受检者血清空腹血糖(FBG)、空腹胰岛素(FINS)、糖化血红蛋白(HbA1c)、胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白(HDLC)及低密度脂蛋白(LDLC)。Vaspin测定采用酶联免疫吸附试验。对调查者的年龄、身高、体重、BMI及血清指标进行正态分布检验,以均数±标准差(±s)方式表示。组间均数比较采用单因素方差分析,当差异有统计学意义时,进一步两两比较。计算胰岛素分泌指数及胰岛素抵抗指数。血清指标和分期之间的相关性分别进行单因素相关分析,以及校正性别、年龄及BMI等因素后的多因素相关分析。

结果

将NDR组、NPDR组及PDR组受检者的年龄、身高、体重及BMI进行比较,差异均无统计学意义(F=0.509,0.343,0.348,0.357;P>0.05);将3组受检者的病程进行比较,差异有统计学意义(F=2.397,P<0.05)。将NDR组、NPDR组、PDR组及对照组受检者的血清HbA1c、FBG、FINS、TC、HDLC、LDLC、Vaspin、HOMA-IS及HOMA-IR水平经单因素方差分析,差异均有统计学意义(F=5.66,5.57,7.90,5.06,6.87,9.19,7.27,4.89,8.56;P<0.05);与对照组相比,NDR组、NPDR组及PDR组的血清中Vaspin含量明显降低。将3组血清TG水平进行比较,差异无统计学意义(F=2.19,P>0.05)。经单因素相关性分析,DR分期与血清HbA1c、FBG、FINS、LDLC、HOMA-IR、Vaspin、HOMA-IS及HDLC水平显著相关(r=0.962,0.861,0.862,0.662,0.613,-0.965,-0.678,-0.853;P<0.05)。校正性别、年龄及BMI等因素后,经多因素相关分析,DR分期与HbA1c、FBG、FINS、LDLC及HOMA-IR水平显著相关(r=0.467,0.598,0.658,0.357,0.377;P<0.05),并且与血清Vaspin、HOMA-IS及HDLC下降显著相关(r=-0.612,-0.472,-0.367;P<0.05)。DR各分期组的Vaspin与HDLC、HOMA-IS呈显著相关(r=0.801,0.715;P<0.05),与HOMA-IR呈负相关(r=0.690,P<0.05)。

结论

研究证实糖尿病视网膜病变患者血清中的Vaspin水平明显降低,可以影响胰岛素的敏感性,与血脂代谢异常密切相关。血清中Vaspin水平降低是DR发病过程中的危险因素,Vaspin在DR的发病过程起重要作用。

Objective

To investigate the changes of serum Vaspin levels in patients with type 2 diabetic retinopathy (DR) and to analyze its correlation with glucose metabolism and insulin sensitivity. To further investigate the role of Vaspin in the development of type 2 DR.

Methods

Seclected the clinical data of 150 patients with type 2 diabetes mellitus diagnosed in the Department of Ophthalmology of Linyi Central Hospital of Shandong from January 2014 to December 2016. The patients were divided into non DR (NDR) group, non proliferative group DR (NPDR) group and proliferative type DR (PDR) group, with 50 cases in each group. Another 50 healthy subjects were chosen as control group at the same time. All patients underwent routine ophthalmologic examination. Age, type 2 diabetes, height, weight, and body mass index (BMI) were recorded. Determination of subjects serum fasting blood glucose (FBG), fasting insulin (FINS), glycosylated hemoglobin (HbA1c), cholesterol (TC), triglyceride (TG), high density lipoprotein (HDLC) and low density lipoprotein (LDLC). Enzyme linked immunosorbent assay (ELISA) was used for the determination of Vaspin. The age, height, weight, BMI and serum indexes of the subjects were tested by normal distribution, and expressed by mean±standard(±s)deviation. The mean between groups were compared by single factor analysis of variance. When the difference was statistically significant, they were further compared with each other. The correlation between serum markers and stages was analyzed by univariate correlation analysis, and the multivariate correlation analysis was performed after adjusting for gender, age, and BMI.

Results

Three DR groups subject age height, weight and BMI were compared, there were no significant differences (F=0.509, 0.343, 0.348, 0.357; P>0.05); the 3 groups of subjects was compared, the difference was statistically significant (F=2.397, P<0.05). Three DR groups and control group by comparing the subjects of each serum level, using single factor variance analysis, the differences were statistically significant (F=5.66, 5.57, 7.90, 5.06, 6.87, 9.19, 7.27, 4.89, 8.56; P<0.05); compared with the control group, significantly decreased the serum levels of Vaspin in three DR groups. The difference of serum TG levels between the 3 groups was not statistically significant (F=2.19, P>0.05). By single factor analysis correlation, DR stage were significantly correlated with each serum level (r=0.962, 0.861, 0.862, 0.662, 0.613, -0.965, -0.678, -0.853; P<0.05). Adjusted for gender, age and BMI factors, multivariate analysis, DR stage were significantly correlated with HbA1c, FBG, FINS, LDLC and HOMA-IR levels (r=0.467, 0.598, 0.658, 0.357, 0.377; P<0.05), and the decline was significantly correlated with serum Vaspin, HOMA-IS and HDLC (r=-0.612, -0.472, -0.367; P<0.05). Was significantly related to DR stage group Vaspin and HDLC, HOMA-IS (r=0.801, 0.715; P<0.05), and negatively correlated with HOMA-IR (r=0.690, P<0.05).

Conclusions

tudies have shown that the serum levels of Vaspin in diabetic retinopathy patients are significantly lower, which can affect the sensitivity of insulin, and is closely related to abnormal lipid metabolism. The decrease of serum Vaspin level is a risk factor in the pathogenesis of DR, and Vaspin plays an important role in the pathogenesis of DR.

表1 NDR、NPDR及PDR组受检者的年龄、病程、身高、体重及BMI资料的比较
表2 NDR组、NPDR组、PDR组及对照组受检者相关指标检测结果的比较
表3 DR分期与检测指标的多因素相关性分析结果
[1]
Ataş M, Çitirik M, Sönmez K, et al. The Protective Effect of Melatonin on the Retinas of Rats with Streptozotocin-Induced Diabetes Mellitus[J]. Turkiye Klinikleri Journal of Medical Sciences, 2011, 31(2):375-379.
[2]
张文博,彭媛,聂红平. 血清可溶性肿瘤坏死因子受体与2型糖尿病视网膜病变相关性研究[J]. 眼科新进展,2016,36(7):662-666.
[3]
Eisma JH, Dulle JE, Fort PE. Current knowledge on diabetic retinopathy from human donor tissues[J]. World Journal of Diabetes, 2015, 6(2):312-320.
[4]
Liebl A. Challenges in optimal metabolic control of diabetes[J]. Diabetes metabo Res Rev, 2002, 18(Suppl. 3):36-41.
[5]
Mlinar B, Marc J, Janez A, et al. Molecular mechanisms of insulin resistance and associated diseases[J]. Clinica Chimica Acta, 2007, 375(1-2):20-35.
[6]
World Medical Association. Code of ethics of theworld medical association[J]. Br Med J, 1964, 2:177.
[7]
Taal MW. Chronic kidney disease 10 years on what have we learned?[J]. Curr Opin Nephrol Hypertens, 2012, 21(6):607-611.
[8]
Jeong SU, Lee SK. Obesity and gallbladder diseases[J]. Korean J gastroenterol, 2012, 59(1):27-34.
[9]
Wilkinson CP, Ferris FL, Klein RE, et al. Global Diabetic Retinopathy Project Group. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9):1677-1682.
[10]
Elmesallamy HO, Kassem DH, Eldemerdash E, et al. Vaspin and visfatin/Nampt are interesting interrelated adipokines playing a role in the pathogenesis of type 2 diabetes mellitus[J]. Metabolism-clinical & Experimental, 2011, 60(1):63-70.
[11]
Chang YC, Wu WC. Dyslipidemia and diabetic retinopathy[J]. Review of Diabetic Studies, 2012, 10(10):121-132.
[12]
Hida K, Wada J, Eguchi J, et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity[J]. PNAS, 2005, 102(30):10610-10615.
[13]
Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310(9):948-959.
[14]
Garweg JG, Wenzel A. Diabetic maculopathy and retinopathy. Functiona and ociomedical significance[J]. Ophthalmologe, 2010, 107(7):628-635.
[15]
Xie XW, Xu L, Jonas JB, et al. Prevalence of diabetic retinopathy among subjects with known diabetes in China: the Beijing Eye Study[J]. Eur J Ophthalmol, 2009, 19(1):91-99.
[16]
Fujii S, Setoguchi C, Kawazu K, et al. Functional characterizationof carrier-mediated transport of pravastatin across the blood-retinalbarrier in rats[J]. Drug Metab Dispos, 2015, 43(12):1956-1959.
[17]
Mishra M, Flaga J, Kowluru RA. Molecular Mechanism of Transcriptional Regulation of Matrix Metalloproteinase-9 in Diabetic Retinopathy[J]. Journal of Cellular Physiology, 2016, 231(8):1709-1718.
[18]
Wong TY, Cheung N, Tay WT, et al. Prevalence and risk factors for diabetic retinopathy: the Singapore Malay Eye Study[J]. Ophthalmology, 2008, 115(11):1869-1875.
[19]
Pedro RA, Ramon SA, Marc BB, et al. Prevalence and relationship between diabetic retinopathy and nephropathy, and its risk factors in the North-East of Spain, a population-based study[J].Ophthalmic Epidemiology, 2010, 17(4):251-265.
[20]
Wong J, Molyneaux L, Constantino M, et al. Timing is everything: age of onset influences long-term retinopathy risk in type 2 diabetes, independent of traditional risk factors[J]. Diabetes Care, 2008, 31(10):1985-1990.
[21]
Rajalakshmi R, Amutha A, Ranjani H, et al. Prevalence and risk factors for diabetic retinopathy in Asian Indians with young onset type 1 and type 2 diabetes[J]. Journal of Diabetes & Its Complications, 2014, 28(3):291-297.
[22]
Shah CA. Diabetic retinopathy: A comprehensive review[J]. Indian Journal of Medical Sciences, 2008, 62(12):500-519.
[23]
莫一菲,周健,贾伟平. 血糖波动的评价指标—平均血糖波动幅度的临床意义及研究进展[J]. 中国糖尿病杂志,2011,3(3):259-263.
[24]
张倩,梁晓春. 血糖波动对糖尿病慢性并发症影响的研究进展[J]. 中华医学杂志,2014,94(36):2873-2875.
[25]
Garberg G, Lövestamadrian M, Nasic S, et al. The prognosis of diabetic retinopathy in patients with type 2 diabetes since 1996-1998: the Skaraborg Diabetes Register[J]. International Ophthalmology, 2015, 35(4):503-511.
[26]
Group CCT, The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial[J]. New England Journal of Medicine, 1994, 125(8):1084-1091.
[27]
Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes[J].The New England Journal of Medicine, 2005, 353(25):2643-2653.
[28]
Villeneuve LM, Reddy MA, Lanting LL, et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth mucle cells in diabetes[J]. PNAS, 2008, 105(26):9047-9052.
[29]
Turk Z, Mesió R, Benko B. Comparison of advanced glycation endproducts on haemoglobin (Hb-AGE) and haemoglobin A1c for the assessment of diabetic control[J]. Clin Chim Acta, 1998, 277(2):159-170.
[30]
Rema M, Srivastava BK, Anitha B, et al. Association of serum lipids with diabetic retinopathy in urban South Indians-The Chennai Urban Rural Epidemiology Study (CURES) Eye Study-2[J]. Diabetic Medicine A Journal of the British Diabetic Association, 2006, 23(9):1029-1036.
[31]
Pradeepa R, Anitha B, Mohan V, et al. Risk factors for diabetic retinopathy in a South Indian Type2 diabetic population-the Chennai Urban Rural Epidemiology Study (CURES) Eye Study-4[J]. Diabetic Medicine, 2008, 25(5):536-542.
[32]
Xie XW, Xu L, Wang YX, et al. Prevalence and associated factors of diabetic retinopathy. The Beijing Eye Study 2006[J]. Graefe′s Archive for Clinical and Experimental Ophthalmology, 2008, 246(11):1519-1526.
[33]
Agroiya P, Philip R, Saran S, et al. Association of serum lipids with diabetic retinopathy in type 2 diabetes.[J]. Indian Journal of Endocrinology & Metabolism, 2013, 17(1):335-337.
[34]
Cetin EN, Bulgu Y, Ozdemir S, et al. Association of serum lipid levels with diabetic retinopathy[J]. Int J Ophthalmol, 2013, 6(3):346-349.
[35]
Gettins PG. Serpin structure, mechanism, and function[J]. Chem Rev, 2002, 102(12):4751-4804.
[36]
Silverman GA, Bird PI, Carrell RW, et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature[J]. Journal of Biological Chemistry, 2001, 276(36):33293-33296.
[37]
Elmesallamy HO, Kassem DH, Eldemerdash E, et al. Vaspin and visfatin/Nampt are interesting interrelated adipokines playing a role in the pathogenesis of type 2 diabetes mellitus[J]. Metabolism Clinical & Experimental, 2011, 60(1):63-70.
[38]
Yin YE, Hou XH, Pan XP, et a1. Serum vaspin level in relation to postprandial plasma glucose concentration in subjects with diabetes[J]. Chin Med J, 2009, 122(21):2550-2533.
[39]
Gulcelik NE, Karakaya J, Gedik A, et al. Serum vaspin levels in type 2 diabetic women in relation to microvascular complications[J]. Eur J Endocrinol, 2009, 160(1):65-70.
[40]
Tasnim F, Faruque MO, Hassan Z, et al. Serum vaspin levels are associated with decreased insulin sensitivity in newly diagnosed type 2 diabetes mellitus in Bangladesh[J]. Journal of Taibah University Medical Sciences, 2015, 10(3):327-332.
[41]
Aust G, Richter O, Rohm S, et al. Vaspin serum concentrations in patients with carotid stenosis[J]. Atherosclerosis, 2009, 204(1):262-266.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 郭庆, 李冠琳, 刘慧, 魏炜, 于洋, 张纯. 脂肪间充质干细胞治疗糖尿病及其慢性并发症的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 58-62.
[3] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[4] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[5] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[6] 李茹月, 李明华, 张凯文, 张悦, 牟大鹏, 王宁利, 刘含若. 早期筛查老年人群糖尿病视网膜病变的卫生经济学分析[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 216-221.
[7] 朱国英, 陈利, 丁永年, 杨长青, 朱风尚. 重视脂肪胰的基础和临床研究[J]. 中华消化病与影像杂志(电子版), 2022, 12(03): 129-132.
[8] 靳潇潇, 郑聪, 何文强. 肾结石与高血压关系的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1284-1288.
[9] 王研, 丁旭, 黄艳红. 维生素D对多囊卵巢综合征患者生育影响的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(05): 393-396.
[10] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
[11] 冉启玉, 杜鹏宇, 孔蕾, 孙冰. 神经酰胺与糖尿病及其并发症关系研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 158-162.
[12] 杨莲, 罗争, 龚娇. 合并阻塞性睡眠呼吸暂停低通气综合征对老年人2型糖尿病视网膜病变的影响[J]. 中华老年病研究电子杂志, 2022, 09(03): 33-36.
[13] 张金娜, 盖家宁, 李影. 脂质运载蛋白2在肥胖症及相关疾病中的作用研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 50-54.
[14] 于莉莉, 李艳花, 张朝阳, 邓一鸣, 林剑泷, 冯志伟. 不同组织慢性炎症的特点及其在胰岛素抵抗发展中的作用[J]. 中华肥胖与代谢病电子杂志, 2021, 07(04): 260-265.
[15] 梁俏丽, 陈静娟, 周锋, 邵燕, 王玉凯, 章成国. 胰岛素抵抗与缺血性脑卒中关系的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(02): 120-124.
阅读次数
全文


摘要