[1] |
Wu PC, Huang HM, Yu HJ, et al. Epidemiology of myopia[J]. The Asia-Pacific Journal of Ophthalmology (Phila), 2016, 5(6): 386-393.
|
[2] |
Leo SW. Current approaches to myopia control[J]. Current Opinion in Ophthalmology, 2017, 28(3): 267-275.
|
[3] |
Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopiaand temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042.
|
[4] |
Sambhav K, Grover S, Chalam KV. The application of optical coherence tomography angiography in retinal diseases[J]. Survey of Ophthalmology, 2017, 62(6): 838-866.
|
[5] |
Zhang A, Zhang Q, Chen CL, et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. Journal of Biomedical Optics, 2015, 20(10): 100901.
|
[6] |
Rosenfeld PJ, Durbin MK, Roisman L, et al. ZEISS Angioplex™ spectral domain optical coherence tomography angiography: technical aspects[J]. Developments in Ophthalmology, 2016, 56: 18-29.
|
[7] |
Stanga PE, Tsamis E, Papayannis A, et al. Swept-source optical coherence tomography Angio™ (Topcon Corp, Japan): technology review[J]. Developments in Ophthalmology, 2016, 56: 13-17.
|
[8] |
Jia YL, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710-4725.
|
[9] |
吕湘云,艾明. 光学相干断层扫描血管成像(OCTA)在黄斑疾病中的应用进展[J]. 眼科新进展,2019,39 (1):94-97.
|
[10] |
Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(1): 45-50.
|
[11] |
Jia YL, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J]. Proceedings of the National Academy of Sciences of the USA, 2015, 112(18): E2395-E2402.
|
[12] |
Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications[J]. Progress in Retinal and Eye Research, 2017, 60: 66-100.
|
[13] |
Chen FK, Viljoen RD, Bukowska DM. Classification of image artefacts in optical coherence tomography angiography of the choroid in macular diseases[J]. Clinical & Experimental Ophthalmology, 2016, 44(5): 388-399.
|
[14] |
Choi QJ, Moult EM, Waheed NK, et al. Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy[J]. Ophthalmology, 2015, 122(12): 2532-2544.
|
[15] |
Hayashi K, Ohno-Matsui K, Shimada N. Long-term pattern of progression of myopic maculopathy: a natural history study[J]. Ophthalmology, 2010, 117(8): 1595-1611.
|
[16] |
Querques L, Giuffrè C, Corvi F. Optical coherence tomography angiography of myopic choroidal neovascularisation[J]. British Journal of Ophthalmology, 2017, 101(5): 609-615.
|
[17] |
Miyata M, Ooto S, Hata M, et al. Detection of myopic choroidal neovascularization using optical coherence tomography angiography[J]. American Journal of Ophthalmology, 2016, 165: 108-114.
|
[18] |
Bruyère E, Miere A, Cohen SY, et al. Neovascularzation secondary to high myopia imaged by optical coherence tomography angiography[J]. Retina, 2017, 37(11): 2095-2101.
|
[19] |
Ishida T, Jonas JB, Ishii M, et al. Peripapillary arterial ring of Zinn-Haller in highly myopia eyes as detected by optical coherence tomography angiography[J]. Retina, 2017, 37(2): 299-304.
|
[20] |
郑志坤,黎铧,李娟娟. 高度近视眼视盘旁Zinn-Haller动脉环荧光素血管造影特征分析[J]. 眼科新进展,2015,35(5):479-481.
|
[21] |
Jonas JB, Holbach L, Panda-Jonas S. Peripapillary arterial circle of Zinn-Haller: location and spatial relationships with myopia[J]. PLoS ONE, 2013, 8(11): e78867.
|
[22] |
陈秋莹,贺江南,华怡红,等. 高度近视继发视盘周围脉络膜空腔视盘血流密度的变化[J]. 国际眼科杂志,2017,17(7):1307-1312.
|
[23] |
Chen Q, He J, Hua YH, et al. Exploration of peripapillary vessel density in highly myopic eyes with peripapillary intrachoroidal cavitation and its relationship with ocular parameters using optical coherence tomography angiography[J]. Clinical and Experimental Ophthalmology, 2017, 45(9): 884-893.
|
[24] |
Spaide RF, Akiba M, Ohno-Matsui K. Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography[J]. Retina, 2012, 32(6): 1037-1044.
|
[25] |
Ohno-Matsui K, Akiba M, Moriyama M, et al. Intrachoroidal cavitation in macular area of eyes with pathologic myopia[J]. American Journal of Ophthalmology, 2012, 154(2): 382-393.
|
[26] |
徐吉,魏璐,俞素勤,等. 病理性近视患者黄斑功能的微视野检查[J]. 中华眼底病杂志,2011,27(1):52-55.
|
[27] |
Hirooka K, Misaki K, Nitta E, et al. Comparison of macular integrity assessment (MAIA™), MP-3, and the humphrey field analyzer in the evaluation of the relationship between the structure and function of the macula[J]. PloS ONE, 2016, 11(3): e0151000.
|
[28] |
Timberlake GT, Mainster MA, Webb RH, et al. Retinal locali-zation of scotomata by scanning laser ophthalmoscopy[J]. Investigative Ophthalmology & Visual Science, 1982, 22(1): 91-97.
|
[29] |
Acton JH, Greenstein VC. Fundus-driven perimetry (micro-perimetry) compared to conventional static automated perimetry: similarities, differences, and clinical applications[J]. Canadian Journal of Ophthalmology, 2013, 48(5): 358-363.
|
[30] |
Fujiwara A, Shiragami C, Manabe S, et al. Normal values of retinal sensitivity determined by macular integrity assessment[J]. Nippon Ganka Gakkai Zasshi, 2014, 118(1): 15-21.
|
[31] |
刘会,王旭. 微视野仪在视功能评估中的应用[J]. 法医学杂志,2014,30(3):194-196.
|
[32] |
Dolar-Szczasny J, Šwięch-Zubilewicz A, Mackiewicz J. Macular integrity assessment and fixation analysis in chronic central serous chorioretinopathy[J]. Journal of Ophthalmol, 2018, 2018: 1-6.
|
[33] |
Wang JW, Jie CH, Tao YJ, et al. Macular integrity assessment to determine the association between macular microstructure and functional parameters in diabetic macular edema[J]. Ophthalmology, 2018, 11(7): 1185-1191.
|
[34] |
Mukherjee D, Lad EM, Vann RR, et al. Correlation between macular integrity assessment and optical coherence tomography imaging of ellipsoid zone in macular telangiectasia type 2[J]. Investigative Ophthalmology & Visual Science, 2017, 58(6): BI0291-BI0299.
|
[35] |
Wu ZC, Guymer RH, Jung CJ, et al. Measurement of retinal sensitivity on tablet devices in age-related macular degeneration[J]. Translational Vision Science & Technology, 2015, 4(3): 13.
|
[36] |
Scassa C, Cupo G, Bruno M, et al. Optical devices in highly myopic eyes with low vision: a prospective study[J]. Clinica Terapeutica, 2012, 163(3): 115-120.
|
[37] |
Qin YW, Zbu MJ, Qu XM, et al. Regional macular light sensitivity changes in myopic Chinese adults: an MP-1 Study[J]. Investigative Ophthalmology & Visual Science, 2010, 51(9): 4451-4457.
|
[38] |
Gella L, Raman R, Sharma T. Evaluation of in vivo human retinal morphology and function in myopes[J]. Current Eye Research, 2011, 36(10): 943- 946.
|
[39] |
Wang YY, Ye J, Shen M, et al. Photoreceptor degeneration is correlated with the deterioration of macular retinal sensitivity in high myopia[J]. Investigative Ophthalmology & Visual Science, 2019, 60(8): 2800-2810.
|
[40] |
Mandelcorn MS, Podbielski DW, Mandelcorn ED. Fixation stability as a goal in the treatment of macular disease[J]. Canadian Journal of Ophthalmology, 2013, 48(5): 364-367.
|
[41] |
周姝,夏文涛,刘瑞珏,等. 微视野检查评定视觉功能的临床应用研究进展[J]. 眼科新进展,2015,35(3):293-297.
|
[42] |
Molina-Martín A, Pérez-Cambrodí RJ, Piñero DP. Current clinical application of microperimetry: a review[J]. Seminars in Ophthalmology, 2018, 33(5): 620- 628.
|
[43] |
Zhu XJ, He W, Zhang K,et al. Fixation characteristics in highly myopic eyes: the shanghai high myopia study[J]. Scientific Reports, 2019, 9(1): 6502.
|
[44] |
栗改云,贾亚丁,张棉花. 正常成年人中心固视点的微视野检测[J]. 中华眼底病杂志,2007,23(6):398-400.
|
[45] |
Raman R, Damkondwar D, Neriyanuri S, et al. Microperimetry biofeedback training in a patient with bilateral myopic macular degeneration with central scotoma[J]. Indian Journal of Ophthalmology, 2015, 63(6): 534-536.
|
[46] |
Markowitz SN, Nido MD, Chen L. Microperimetry and retinal sensitivity estimates in low vision[J]. Canadian Journal of Ophthalmology, 2019, 54(4): e161-e163.
|
[47] |
陈辉. 眼底自发荧光技术在眼科中的应用[J]. 国际眼科杂志,2004,4(3):488-491.
|
[48] |
Banda HK, Shah GK, Blinder KJ. Applications of fundus autofluorescence and widefield angiography in clinical practice.Canadian journal of ophthalmology[J]. Canadian Journal of Ophthalmology, 2019, 54(1): 11-19.
|
[49] |
阳雪,高婷婷,龙琴. 高度近视患者眼底自发荧光的影像特征观察[J]. 临床眼科杂志,2015,23(6):481-483.
|
[50] |
Gabai A, Veritti D, Lanzetta P. Fundus autofluorescence applications in retinal imaging[J]. Indian Journal of Ophthalmology, 2015, 63(5): 406-415.
|
[51] |
Calvo-Maroto AM, Cerviño A. Spotlight on fundus auto-fluorescence[J]. Clinical Optometry, 2018, 10: 25-32.
|
[52] |
徐吉,樊莹. 自发荧光技术在病理性近视黄斑变性诊治中的研究进展[J]. 眼科新进展,2010,30(3):290-292.
|
[53] |
Delori FC, Dorey CK, Staurenghi G, et al. In vivo fluorescenceof the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics[J]. Investigative Ophthalmology & Visual Science, 1995, 36(3): 718-729.
|
[54] |
Bindewa A, Kellner U. Fundus autofluorescence imaging: clinical application and diagnostic relevance[J]. Klinische Monatsblatter fur Augenheilkunde, 2020, 17(8): 64.
|
[55] |
李慧,贾亚丁. 眼底自发荧光成像在视网膜疾病诊断中的应用[J]. 国际眼科纵览,2014,38(1):56-61.
|
[56] |
Yung M, Klufas MA, Sarraf D. Clinical applications of fundus autofluorescence in retinal disease[J]. International Journal of Retina and Vitreous, 2016, 2: 12.
|
[57] |
Youssef PN, Sheibani N, Albert DM. Retinal light toxicity[J]. Eye (London, England), 2011, 25(1): 1-14.
|
[58] |
Miere A, Capuano V, Serra R, et al. Evaluation of patchy atrophy secondary to high myopia by semiautomated sofeware for funds autofluorescence analysis[J]. Retina, 2018, 38(7): 1301-1306.
|
[59] |
Peng XJ, Su LP. Characteristics of fundus autofluorescence in cystoid macular edema[J]. Chinese Medical Journal, 2011, 124(2): 253-257.
|
[60] |
Klen RM, Curtin BJ. Lacquer crack lesions in pathologic myopia[J]. American Journal of Ophthalmology, 1975, 79(3): 386-392.
|
[61] |
Xu X, Fang YX, Uramoto K, et al. Clinical features of lacquer cracks in eyes with pathologic myopia[J]. Retina, 2019, 39(7): 1265-1277.
|
[62] |
Shi XH, Wei WB. Research progress of treatment strategies for choroidal neovascularization secondary to pathological myopia[J]. Ophthalmology in China, 2019, 55(10): 791-795.
|
[63] |
Parodi MB, Iacono P, Sacconi R, et al. Fundus autofluorescence changes after ranibizumab treatment for subfoveal choroidal neovascularization secondary to pathologic myopia[J]. American Journal of Ophthalmology, 2015, 160(2): 322-327.
|
[64] |
Sawa M, Gomi F, Tsujikawa M, et al. Abnormal fundus auto-fluorescence patterns in myopic choroidal neovascularisation[J]. British Journal of Ophthalmology, 2008, 92(9): 1236-1240.
|
[65] |
Whitehead AJ, Mares JA, Danis RP. Macular pigment: a review of current knowledge[J]. Archives of Ophthalmology, 2006, 124(7): 1038-1045.
|
[66] |
Delori FC, Fleckner MR, Goger DG, et al. Autofluorescence distribution associated with drusen in age-related macular degeneration[J]. Investigative Ophthalmology & Visual Science, 2000, 41(2): 496-504.
|
[67] |
Rothenbuehler SP, Wolf-Schnurrbusch UEK, Wolf S. Macular pigment density at the site of altered fundus autofluorescence[J]. Graefe′s Archive for Clinical and Experimental Ophthalmology, 2011, 249(4): 499-504.
|
[68] |
Robson AG, Moreland JD, Pauleikhoff D, et al. Macular pigment density and distribution: comparison of fundus auto-fluorescence with minimum motion photometry[J]. Vision Research, 2003, 43(16): 1765-1775.
|
[69] |
Schmitz-Valckenberg S. Fundus autofluorescence imaging[J]. Klinische Monats- blatter fur Augenheilkunde, 2015, 232(9): 1050-1053.
|