切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2025, Vol. 15 ›› Issue (04) : 199 -205. doi: 10.3877/cma.j.issn.2095-2007.2025.04.002

论著

基于计算流体力学角膜表面空气脉冲压强分布特征的临床研究
胡沘1, 秦晓2, 肖峣3, 田磊4,()   
  1. 1100730 首都医科大学附属北京同仁医院2023级硕士研究生
    2100069 首都医科大学生物医学工程学院 临床应用生物力学基础研究北京市重点实验室
    3100191 北京航空航天大学航空科学与工程学院 计算流体力学国家重点实验室
    4100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 眼科学与视觉科学北京市重点实验室
  • 收稿日期:2025-06-17 出版日期:2025-08-28
  • 通信作者: 田磊
  • 基金资助:
    国家自然科学基金项目(82171101); 北京市自然科学基金项目(7242019)

The air puff pressure distribution characteristics on the corneal surface based on computational fluid dynamics

Bi Hu1, Xiao Qin2, Yao Xiao3, Lei Tian4,()   

  1. 1Master′s degree 2023, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
    2Beijing Key Laboratory of Basic Research on Clinical Application of Biomechanics, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
    3National Laboratory for Computational Fluid Dynamics, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
    4Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China
  • Received:2025-06-17 Published:2025-08-28
  • Corresponding author: Lei Tian
引用本文:

胡沘, 秦晓, 肖峣, 田磊. 基于计算流体力学角膜表面空气脉冲压强分布特征的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(04): 199-205.

Bi Hu, Xiao Qin, Yao Xiao, Lei Tian. The air puff pressure distribution characteristics on the corneal surface based on computational fluid dynamics[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2025, 15(04): 199-205.

目的

探讨在空气脉冲作用下正常角膜、圆锥角膜及高度近视眼角膜表面压强的时间空间变化特征。

方法

选取2022年1月至2022年12月于首都医科大学附属北京同仁医院北京同仁眼科中心就诊健康受试者2例(2只眼)、圆锥角膜患者2例(2只眼)及高度近视眼患者各2例(2只眼)。其中,健康受试者男性1例(1只眼),女性1例(1只眼);年龄30~32岁,平均年龄31岁。圆锥角膜患者男性1例(1只眼),女性1例(1只眼);年龄22~30岁,平均年龄26岁。高度近视眼患者男性1例(1只眼),女性1例(1只眼);年龄24~26岁,平均年龄25岁。使用计算流体力学与三维眼前节分析仪Scheimpflug摄像技术获取健康角膜、圆锥角膜及高度近视眼角膜受试者角膜前后表面的几何参数,构建个性化三维角膜模型。设定计算域和边界条件后,模拟可视化眼反应分析仪快速气流脉冲对角膜的影响,记录流场结构及表面压强分布。

结果

5 ms流场时未形成较稳定的剪切层,靠近轴线处气流受阻减速增压,形成轴向逆压梯度,远离轴线的气流上卷,在约7 ms时到达壁面;10 ms流场时剪切层仍不稳定,压力波形成且仅在7 ms~13 ms射流加速过程中存在;15 ms流场时13 ms后形成较为稳定混合层,混合层内压力波动减弱和消失,对周围流动的引射作用增强,压强降低;20 ms流场时射流动压下降,驻点压强降低,剪切层外的负压绝对值降低,压力梯度趋向平缓;25 ms流场时出现不稳定剪切层压力波,角膜驻点和附近的压强迟滞。健康角膜射流速度达到峰值附近时的表面压强径向流动呈现典型的亚声速冲击射流流动特征,以角膜中心为驻点,全部动压转换为静压,速度滞止至0,压力达到峰值,驻点以外流体随后转向沿检测件表面向下游流动。角膜表面最大驻点压强发生在15 ms到16 ms之间。该特点可由Navier-Stokes方程组描述。圆锥角膜表面压强径向分布曲线在驻点附近比健康角膜的压强低,压强分布曲线下降比健康角膜缓,斜率绝对值更小,患病程度越重其径向压强离健康角膜压强越远,表面压强超过健康角膜表面压强的径向位置越靠外。近视眼患者角膜表面压强径向分布曲线在除角膜边缘都比健康角膜压强高,在径向无量纲距离0.4之前下降更缓。

结论

空气脉冲约7 ms达到角膜顶点,正常角膜、圆锥角膜及高度近视眼患者角膜表面压强随时间与空间变化的规律一致,仅数值上有差异。压强以顶点为中心呈对称性变化,靠近驻点处流速降低而压强增大。射流加速和减速过程存在滞后现象,最大驻点压强与最大射流速度基本重合,二者时间曲线形态相似。

Objective

To investigate the spatiotemporal variation of pressure on the corneal surface under an air puff load among normal, keratoconic, and highly myopic corneas.

Methods

From January 2022 to December 2022, two healthy subjects (two eyes), two patients with keratoconus (two eyes), and two patients with high myopia (two eyes) were selected for the study at the Beijing Tongren Ophthalmic Center affiliated to Capital Medical University. Among them, the healthy subjects comprised one male (one eye) and one female (one eye) with an average age of 31 (ranging from 30 to 32 years). The keratoconus patients comprised one male (one eye) and one female (one eye) with an average age of 26 (ranging from 22 to 30 years). The high myopia patients comprised one male (one eye) and one female (one eye) with an average age of 25 years (ranging from 24 to 26 years). The geometric parameters of the anterior and posterior surfaces of the cornea from three groups of subjects: normal cornea, keratoconus, and high myopi using computational fluid dynamics coupled with three dimensional Scheimpflug imaging were performed. A personalized three-dimensional corneal model was constructed. After setting up the computational domain and boundary conditions, simulate and visualize the effects of the air puff from the ocular response analyzer on the cornea, recording the flow field structure and surface pressure distribution.

Results

When the flow field was 5 ms, a relatively stable shear layer was not formed, and the airflow near the axis was obstructed, decelerated, and pressurized, forming an axial reverse pressure gradient. The airflow away from the axis rolled up and reached the wall at about 7 ms. When the flow field was 10 ms, the shear layer was still unstable, and the pressure waveform was formed and only existed for 7 ms~13 ms during the jet acceleration process. At a flow field of 15 ms, a relatively stable mixing layer was formed after 13 ms, and the pressure fluctuations within the mixing layer weaken and disappear. The jet′s injection effect on the surrounding flow was enhanced, and the pressure decreases. At a flow field of 20 ms, the jet dynamic pressure decreased, the stagnation pressure decreased, the absolute negative pressure outside the shear layer decreases, and the pressure gradient tended to flatten. Unstable shear layer pressure waves appeared in the 25 ms flow field, with pressure hysteresis near the corneal stagnation point. When the velocity of the healthy corneal jet reaches its peak, the radial flow of surface pressure exhibited typical subsonic shock jet flow characteristics. With the corneal center as the stationary point, all dynamic pressure was converted into static pressure, and the velocity stagnates to 0. When the pressure reacheed its peak, the fluid outside the stationary point then turned and flowed downstream along the surface of the detection piece. The maximum stationary pressure on the corneal surface occured between 15 ms and 16 ms. This characteristic was described by Navier-Stokes system of equations. The radial distribution curve of pressure on the surface of keratoconus was lower than that of healthy cornea near the stagnation point, and the pressure distribution curve decreased more slowly than that of healthy cornea. The absolute value of the slope was smaller. When more significant with the degree of disease, and the radial position where the surface pressure exceeded that of healthy cornea was further away. The radial distribution curve of corneal surface pressure in myopic eyes was higher than that of healthy cornea in a considerable ranged except for the corneal edge, and the decrease was slower before the radial dimensionless distance of 0.4.

Conclusions

The air puff reaches the apex of the cornea in approximately 7 ms. The changes in pressure over time and space for normal corneas, keratoconus corneas, and corneas with high myopia exhibit consistent patterns, differing only in numerical distribution. The pressure changes symmetrically around the apex, with a decrease in flow velocity and an increase in pressure near the stagnation point. There was a hysteresis phenomenon during the acceleration and deceleration processes of the jet, and the maximum pressure at the stagnation point closely coincides with the maximum jet velocity, with both time curves exhibiting similar shapes.

图4 15 ms附近健康角膜表面压强曲线分布图
图9 不同患者角膜标准化后表压的沿径向分布图 M,高度近视眼患者;N,健康受试者;KC,圆锥角膜患者
[1]
Singh RB, Koh S, Sharma N, et al. Keratoconus[J]. Nat Rev Dis Primers, 2024, 10(1): 81.
[2]
Morishige N, Shin-Gyou-Uchi R, Azumi H, et al. Quantitative analysis of collagen lamellae in the normal and keratoconic human cornea by second harmonic generation imaging microscopy[J]. Invest Ophthalmol Vis Sci, 2014, 55(12): 8377-8385.
[3]
White TL, Lewis PN, Young RD, et al. Elastic microfibril distribution in the cornea: Differences between normal and keratoconic stroma[J]. Exp Eye Res, 2017, 159: 40-48.
[4]
Blackburn BJ, Jenkins MW, Rollins AM, et al. A review of structural and biomechanical changes in the cornea in aging, disease, and photochemical crosslinking[J]. Front Bioeng Biotechnol, 2019, 7: 66.
[5]
Singh RB, Parmar UPS, Jhanji V. Prevalence and Economic Burden of Keratoconus in the United States[J]. Am J Ophthalmol, 2024, 259: 71-78.
[6]
Binder PS. Analysis of ectasia after laser in situ keratomileusis: risk factors[J]. J Cataract Refract Surg, 2007, 33(9): 1530-1538.
[7]
中华医学会眼科学分会角膜病学组. 中国激光角膜屈光手术并发症防治专家共识(2024年)[J]. 中华眼科杂志202460(10):804-812.
[8]
Kling S, Bekesi N, Dorronsoro C, et al. Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation[J]. PLoS One, 2014, 9(8): e104904.
[9]
Sinha RA, Kurian M, Matalia H, et al. Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo[J]. J Mech Behav Biomed Mater, 2015, 48: 173-182.
[10]
Montanino A. Modeling with a meshfree approach the cornea-aqueous humor interaction during the air puff test[J]. J Mech Behav Biomed Mater, 2018, 77: 205-216.
[11]
Qin X, Tian L, Zhang H, et al. Evaluation of corneal elastic modulus based on Corneal Visualization Scheimpflug Technology[J]. Biomed Eng Online, 2019, 18(1): 42.
[12]
Simonini I, Pandolfi A. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests[J]. J Mech Behav Biomed Mater, 2016, 58: 75-89.
[13]
Maklad O, Eliasy A, Chen KJ, et al. Simulation of air puff tonometry test using Arbitrary Lagrangian-Eulerian (ALE) deforming mesh for corneal material characterisation[J]. Int J Environ Res Public Health, 2019, 17(1): 54.
[14]
Shih PJ, Shih HJ, Wang IJ, et al. The extraction and application of antisymmetric characteristics of the cornea during air-puff perturbations[J]. Comput Biol Med, 2024, 168: 107804.
[15]
Gordon-Shaag A, Millodot M, Ifrah R, et al. Aberrations and topography in normal, keratoconus-suspect, and keratoconic eyes[J]. Optom Vis Sci, 2012, 89(4): 411-418.
[16]
He X, Sankaridurg P, Naduvilath T, et al. Normative data and percentile curves for axial length and axial length/corneal curvature in Chinese children and adolescents aged 4-18 years[J]. Br J Ophthalmol, 2023, 107(2): 167-175.
[17]
Yousefi A, Roberts CJ, Reilly MA. The shape of corneal deformation alters air puff-induced loading[J]. Front Bioeng Biotechnol, 2022, 10: 848060.
[18]
Zhang M, Zhang F, Li Y, et al. Early diagnosis of keratoconus in chinese myopic eyes by combining Corvis ST with Pentacam[J]. Curr Eye Res, 2020, 45(2): 118-123.
[19]
Anderson JD. Computational fluid dynamics: the basics with applications[M].北京:清华大学出版社,2012.
[20]
Versteeg HK. An introduction to computational fluid dynamics the finite volume method, 2/E[M]. Chennai:Pearson Education India, 2007.
[21]
Ariza-Gracia AM, Wu W, Calvo B, et al. Fluid-structure simulation of a general non-contact tonometry. A required complexity[J]. Comput Methods Appl Mech Eng, 2018, 340: 202-215.
[22]
刘巍. 计算空气动力学并行编程基础[M]. 北京:国防工业出版社,2013.
[23]
符松,王亮. 湍流模式理论[M]. 北京:科学出版社,2023.
[24]
Wilcox BDC. Turbulence Modeling For CFD[M]. La Canada, CA: DCW industries, 1998.
[25]
Zhang D, Zhang H, Tian L, et al. Exploring the biomechanical properties of the human cornea in vivo based on Corvis ST[J]. Front Bioeng Biotechnol, 2021, 9: 771763.
[26]
包芳军,邓曼丽,王勤美. 角巩膜生物力学性能测量技术的研究进展[J]. 中华眼科杂志201551(11):875-880.
[1] 黄云大, 周琪, 何冬慧, 黄敏方. 基于计算流体力学对阻塞性睡眠呼吸暂停患者治疗前后上气道流场对比分析的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(02): 139-144.
[2] 张英蕾, 石园方, 竺向佳. 重视高度近视眼合并白内障围手术期并发症[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(04): 193-198.
[3] 唐果菓, 彭荣梅, 肖格格, 洪晶. VSL型巩膜镜治疗不规则散光有效性与安全性的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 135-140.
[4] 闫刚, 刘梓轩, 曲利军. 了解圆锥角膜分期、分级及分类的历史沿革和应用前景[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(01): 1-5.
[5] 马萍, 鲁静, 兰长骏. 跨上皮和去上皮快速角膜交联术治疗进展期圆锥角膜的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 206-211.
[6] 徐静, 申笛, 孙西宇, 周堃, 王亚妮, 韦伟. 去上皮与跨上皮快速角膜胶原交联术治疗圆锥角膜长期疗效的临床观察[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(06): 332-337.
[7] 江卓婷, 高妍, 李春晖. 相干光断层扫描在角膜屈光手术术前筛查中应用的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(04): 247-251.
[8] 陈乐然, 袁翌斐, 陈跃国. 儿童圆锥角膜发病机制与角膜胶原交联术适应证及治疗研究的新进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(01): 50-54.
[9] 刘佳, 贺瑞, 李晓娜. 断层扫描生物力学指数应用于屈光手术术前早期圆锥角膜筛查的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(06): 341-346.
[10] 张宁宁, 慕璟玉, 马晓玲, 李小龙, 王雁, 赵勇. 儿童青少年高度近视眼眼底特征的研究现状[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(04): 252-256.
[11] 张艺凡, 戴锦晖, 叶琳. 促渗剂在去上皮角膜胶原交联术和跨上皮角膜胶原交联术中应用的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(03): 188-192.
[12] 刘佳, 贺瑞, 李晓娜, 高妍. 角膜屈光手术术前筛查早期圆锥角膜的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2021, 11(06): 375-379.
[13] 姚沁楠, 万修华. 有晶状体眼后房型人工晶状体植入术与角膜屈光手术治疗高度近视眼有效性、安全性及可预测性的Meta分析[J/OL]. 中华眼科医学杂志(电子版), 2021, 11(06): 346-352.
[14] 李刚, 白若濛, 黄琳, 李松果. 兔眼角膜交联术后基质重塑对角膜生物力学稳定性的影响[J/OL]. 中华临床医师杂志(电子版), 2021, 15(07): 537-541.
[15] 王彦旭, 何益港, 秦永林. 计算流体力学研究B型主动脉夹层中4D Flow MRI的应用进展[J/OL]. 中华介入放射学电子杂志, 2023, 11(02): 159-163.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?