切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (03) : 188 -192. doi: 10.3877/cma.j.issn.2095-2007.2022.03.012

综述

促渗剂在去上皮角膜胶原交联术和跨上皮角膜胶原交联术中应用的研究进展
张艺凡1, 戴锦晖2,(), 叶琳3   
  1. 1. 200031 复旦大学附属眼耳鼻喉科医院2020级博士研究生
    2. 200032 复旦大学附属中山医院眼科 国家卫生健康委员会近视眼重点实验室
    3. 200032 复旦大学附属中山医院2021级博士研究生
  • 收稿日期:2021-08-02 出版日期:2022-06-28
  • 通信作者: 戴锦晖
  • 基金资助:
    国家自然科学基金面上项目(81970831)

Advance on the penetration enhancers of standard corneal collagen crosslinking and trans-epithelial corneal collagen crosslinking

Yifan Zhang1, Jinhui Dai2,(), Lin Ye3   

  1. 1. Doctor′s degree 2020, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
    2. Department of Ophthalmology, Zhongshan Hospital, Fudan University, NHC Key Laboratory of Myopia (Fudan University), Shanghai 200032, China
    3. Doctor′s degree 2021, Zhongshan Hospital, Fudan University, Shanghai 200032, China
  • Received:2021-08-02 Published:2022-06-28
  • Corresponding author: Jinhui Dai
引用本文:

张艺凡, 戴锦晖, 叶琳. 促渗剂在去上皮角膜胶原交联术和跨上皮角膜胶原交联术中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 188-192.

Yifan Zhang, Jinhui Dai, Lin Ye. Advance on the penetration enhancers of standard corneal collagen crosslinking and trans-epithelial corneal collagen crosslinking[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(03): 188-192.

角膜胶原交联(CXL)是利用光敏剂的光化学反应增加角膜胶原纤维间和内部化学键对酶解的抵抗力,增强角膜的生物力学强度,减缓圆锥角膜和角膜扩张等病变进展的一种技术。目前,CXL主要使用紫外线(或)黄素单核苷酸交联。经典的角膜胶原交联手术(S-CXL)是通过去除角膜上皮以辅助光敏剂药物渗透至角膜基质,该方法对患者的不适感强且术后并发症多。在S-CXL基础上,向光敏剂药物中添加促渗剂,即为跨上皮角膜胶原交联术(TE-CXL)。TE-CXL则具有舒适度佳、安全性高且应用范围广等优点。本文中笔者就TE-CXL促渗剂种类、特点及作用机制的研究进展进行综述,以期为促渗剂的选择和TE-CXL递药系统设计提供新思路。

Corneal collagen crosslinking (CXL) is a newly evolved technique that can increase the chemical bonds between and within corneal collagen fibers and tissue resistance to enzymatic dissolution based on Laws of photochemistry for photosensitizer, thereby enhancing the biomechanical strength of the cornea and slowing the progression of lesions such as keratoconus and keratectasia. Currently, the ultraviolet A and (or) riboflavin crosslinking has been widely used to complete CXL. The standard CXL (S-CXL) method is the penetration of assisted photosensitizer to corneal stroma by removing corneal epithelium, which has postoperative complications and is discomfort for patients. Based on CXL, the penetration enhancers are added into photosensitizers, which is trans-epithelial CXL (TE-CXL). It has a wider range of application coverage, and is safer and more comfortable. The type of penetration enhancers of TE-CXL, characteristics and mechanism of action were reviewed, aiming to provide a new idea for selection of penetration enhancers and design of delivery system.

表1 跨上皮角膜胶原交联的商用制剂
[1]
Zadnik K, Barr JT, Edrington TB, et al. Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study [J]. Invest Ophthalmol Vis Sci, 1998, 39(13): 2537-2546.
[2]
Sharif R, Bak-Nielsen S, Hjortdal J, et al. Pathogenesis of Keratoconus: The intriguing therapeutic potential of prolactin-inducible protein [J]. Prog Retin Eye Res, 2018, 67, 150-167.
[3]
谢江淼,洪晶.圆锥角膜基质环植入术的研究进展[J/CD]. 中华眼科医学杂志(电子版)202111(1):48-53.
[4]
Wagner H, Barr J, Zadnik K, et al. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study: methods and findings to date [J]. Cont Lens Anterior Eye, 2007, 30(4): 223-232.
[5]
Spoerl F, Huhle M, Kasper M, et al. Erhöhung der Festigkeit der Hornhaut durch Vernetzung [J]. Ophthalmologe, 1997, 94(12): 902-906.
[6]
McKay TB, Priyadarsini S, Karamichos D. Mechanisms of collagen crosslinking in diabetes and keratoconus [J]. Cells, 2019, 8(10): 1239.
[7]
Järvinen K, Järvinen T, Urtti A. Ocular absorption following topical delivery [J]. Adv Drug Del Rev, 1995, 16(1): 3-19.
[8]
Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus [J]. Am J Ophthalmol, 2003, 135(5): 620-627.
[9]
Wollensak G, Spoerl E, Wilsch M, et al. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit [J]. J Cataract Refract Surg, 2003, 29(9): 1786-1790.
[10]
Ghisla S, Massey V, Lhoste JM, et al. Fluorescence and optical characteristics of reduced flavines and flavoproteins [J]. Biochemistry, 1974, 13(3): 589-597.
[11]
Spörl E, Schreiber J, Hellmund K, et al. Untersuchungen zur Verfestigung der Hornhaut am kaninchen [J]. Ophthalmologe, 2000, 97(3): 203-206.
[12]
Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue [J]. Exp Eye Res, 1998, 66(1): 97-103.
[13]
Hersh PS, Stulting RD, Muller D, et al. United States multicenter clinical trial of corneal collagen crosslinking for keratoconus treatment [J]. Ophthalmology, 2017, 124(9): 1259-1270.
[14]
Soeters N, Wisse RP, Godefrooij DA, et al. Transepithelial versus epithelium-off corneal cross-linking for the treatment of progressive keratoconus: a randomized controlled trial [J]. Am J Ophthalmol, 2015, 159(5): 821-828.
[15]
Ng SM, Ren M, Lindsley KB, et al. Transepithelial versus epithelium-off corneal crosslinking for progressive keratoconus [J]. Cochrane Database Syst Rev, 2021, 3(3):CD013512.
[16]
Wollensak G, Spoerl E, Wilsch M, et al. Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment [J]. Cornea, 2004, 23(1): 43-49.
[17]
Reinstein DZ, Archer TJ, Gobbe M, et al. Epithelial thickness in the normal cornea: three-dimensional display with very high frequency ultrasound [J]. J Refract Surg, 2008, 24(6): 571-581.
[18]
罗顺荣,吴护平,林志荣,等. 高能量紫外光照射的角膜胶原交联术治疗进展期圆锥角膜的安全性及远期疗效分析[J/CD]. 中华眼科医学杂志(电子版)20166(6):260-266.
[19]
Tian M, Jian W, Zhang X, et al. Three-year follow-up of accelerated transepithelial corneal cross-linking for progressive paediatric keratoconus [J]. Br J Ophthalmol, 2020, 104(11): 1608-1612.
[20]
Lallemand F, Daull P, Benita S, et al. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb [J].J Drug Deliv, 2012: 604204.
[21]
Freeman PD, Kahook MY. Preservatives in topical ophthalmic medications: historical and clinical perspectives [J]. Expert Review of Ophthalmology, 2009, 4(1): 59-64.
[22]
Wachler BSB. Corneal collagen crosslinking with riboflavin[J]. Cornea, 2004, 23, 503-507.
[23]
Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement [J]. J Cataract Refract Surg, 2009, 35(3): 540-546.
[24]
Kissner A, Spoerl E, Jung R, et al. Pharmacological modification of the epithelial permeability by benzalkonium chloride in UVA/Riboflavin corneal collagen cross-linking [J]. Curr Eye Res, 2010, 35(8): 715-721.
[25]
Ehmke T, Seiler TG, Fischinger I, et al. Comparison of corneal riboflavin gradients using dextran and HPMC Solutions [J]. J Refract Surg, 2016, 32(12): 798-802.
[26]
Ishibashi T, Yokoi N, Kinoshita S. Comparison of the short-term effects on the human corneal surface of topical timolol maleate with and without benzalkonium chloride [J]. J Glaucoma, 2003, 12(6): 486-490.
[27]
Baudouin C. Detrimental effect of preservatives in eyedrops: implications for the treatment of glaucoma [J]. Acta Ophthalmol, 2008, 86(7): 716-726.
[28]
Cha SH, Lee JS, Oum BS, et al. Corneal epithelial cellular dysfunction from benzalkonium chloride (BAC) in vitro[J]. Clin Experiment Ophthalmol, 2004, 32(2): 180-184.
[29]
Kim YH, Jung JC, Jung SY, et al. Comparison of the efficacy of fluorometholone with and without benzalkonium chloride in ocular surface disease [J]. Cornea, 2016, 35(2): 234-242.
[30]
Taneri S, Oehler S, Lytle G, et al. Evaluation of epithelial integrity with various transepithelial corneal cross-linking protocols for treatment of keratoconus [J]. J Ophthalmol, 2014: 614380.
[31]
Al-Hity A, Ramaesh K, Lockington D. EDTA chelation for symptomatic band keratopathy: results and recurrence [J]. Eye, 2018, 32(1): 26-31.
[32]
Ko JA, Yanai R, Nishida T. Up-regulation of ZO-1 expression and barrier function in cultured human corneal epithelial cells by substance P [J]. FEBS Lett, 2009, 583(12): 2148-2153.
[33]
Nakamura T, Yamada M, Teshima M, et al. Electrophysiological characterization of tight junctional pathway of rabbit cornea treated with ophthalmic ingredients [J]. Biol Pharm Bull, 2007, 30(12): 2360-2364.
[34]
Morrison PW, Khutoryanskiy VV. Enhancement in corneal permeability of riboflavin using calcium sequestering compounds[J]. Int J Pharm, 2014, 472(1-2): 56-64.
[35]
Tong YC, Chang SF, Liu CY, et al. Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters[J]. J Gene Med, 2007, 9(11): 956-966.
[36]
Armstrong BK, Lin MP, Ford MR, et al. Biological and biomechanical responses to traditional epithelium-off and transepithelial riboflavin-UVA CXL techniques in rabbits [J]. J Refract Surg, 2013, 29(5): 332-341.
[37]
Torricelli AA, Ford MR, Singh V, et al. BAC-EDTA transepithelial riboflavin-UVA crosslinking has greater biomechanical stiffening effect than standard epithelium-off in rabbit corneas [J]. Exp Eye Res, 2014, 125: 114-117.
[38]
Martone G, Frezzotti P, Tosi GM, et al. An in vivo confocal microscopy analysis of effects of topical antiglaucoma therapy with preservative on corneal innervation and morphology [J]. Am J Ophthalmol, 2009, 147(4): 725-735.
[39]
Irvin RT, Mac Alister TJ, Costerton JW. Tris(hydroxymethyl)aminomethane buffer modification of Escherichia coli outer membrane permeability [J]. J Bacteriol, 1981, 145(3): 1397-1403.
[40]
Nahas GG, Sutin KM, Fermon C, et al. Guidelines for the treatment of acidaemia with THAM [J]. Drugs, 1998, 55(2): 191-224.
[41]
Rossi S, Santamaria C, Boccia R, et al. Standard, transepithelial and iontophoresis corneal cross-linking: clinical analysis of three surgical techniques [J]. Int Ophthalmol, 2018, 38(6): 2585-2592.
[42]
Lombardo M, Serrao S, Raffa P, et al. Novel technique of transepithelial corneal cross-linking using iontophoresis in progressive keratoconus [J]. J Ophthalmol, 2016: 7472542.
[43]
Spadea L, Mencucci R. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas [J]. Clin Ophthalmol, 2012, 6: 1785-1792.
[44]
Cifariello F, Minicucci M, di Renzo F, et al. Epi-off versus Epi-on corneal collagen cross-linking in keratoconus patients: a comparative study through 2-year follow-up [J]. J Ophthalmol, 2018: 4947983.
[45]
Collnot EM, Baldes C, Wempe MF, et al. Influence of vitamin E TPGS poly (ethylene glycol) chain length on apical efflux transporters in Caco-2 cell monolayers [J].J Control Release, 2006, 111(1-2): 35-40.
[46]
Ostacolo C, Caruso C, Tronino D, et al. Enhancement of corneal permeation of riboflavin-5′-phosphate through vitamin E TPGS: a promising approach in corneal trans-epithelial cross linking treatment [J]. Int J Pharm, 2013, 440(2): 148-153.
[47]
Rubinfeld RS, Gum GG, Talamo JH, et al. The effect of sodium iodide on stromal loading, distribution and degradation of riboflavin in a rabbit model of transepithelial corneal crosslinking [J]. Clin Ophthalmol, 2021, 15: 1985-1994.
[48]
Hill J, Liu C, Deardorff P, et al. Optimization of oxygen dynamics, UV-a delivery, and drug formulation for accelerated Epi-on corneal crosslinking [J]. Curr Eye Res, 2020, 45(4): 450-458.
[49]
Gabler B, von Mohrenfels WC, Dreiss AK, et al. Vitality of epithelial cells after alcohol exposure during laser-assisted subepithelial keratectomy flap preparation [J]. J Cataract Refract Surg, 2002, 28(10): 1841-1846.
[50]
Samaras K, O′Brart DP, Doutch J, et al. Effect of epithelial retention and removal on riboflavin absorption in porcine corneas [J]. J Refract Surg, 2009, 25(9): 771-775.
[51]
Bilgihan K, Yesilirmak N, Altay Y, et al. Conventional corneal collagen cross-linking versus transepithelial diluted alcohol and iontophoresis-assisted corneal cross-linking in progressive keratoconus [J]. Cornea, 2017, 36(12): 1492-1497.
[52]
Penedo AC, Tomé VD, Ferreiro AF, et al. Enhancement in corneal permeability of riboflavin using cyclodextrin derivates complexes as a previous step to transepithelial cross-linking [J]. Eur J Pharm Biopharm, 2021, 162: 12-22.
[53]
Leccisotti A, Islam T. Transepithelial corneal collagen cross-linking in keratoconus [J]. J Refract Surg, 2010, 26(12): 942-948.
[54]
Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications [J]. Eur J Pharm Biopharm, 2004, 57(1): 19-34.
[55]
Meadows DL, Paugh JR, Joshi A, et al. A novel method to evaluate residence time in humans using a nonpenetrating fluorescent tracer [J]. Invest Ophthalmol Vis Sci, 2002, 43(4): 1032-1039.
[56]
Hagem AM, Thorsrud A, Sandvik GF, et al. Randomized study of collagen cross-linking with conventional versus accelerated UVA irradiation using riboflavin with hydroxypropyl methylcellulose: Two-year results [J]. Cornea, 2019, 38(2): 203-209.
[1] 江卓婷, 高妍, 李春晖. 相干光断层扫描在角膜屈光手术术前筛查中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 247-251.
[2] 陈乐然, 袁翌斐, 陈跃国. 儿童圆锥角膜发病机制与角膜胶原交联术适应证及治疗研究的新进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 50-54.
[3] 刘佳, 贺瑞, 李晓娜. 断层扫描生物力学指数应用于屈光手术术前早期圆锥角膜筛查的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 341-346.
[4] 刘佳, 贺瑞, 李晓娜, 高妍. 角膜屈光手术术前筛查早期圆锥角膜的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 375-379.
[5] 谢江淼, 洪晶. 圆锥角膜基质环植入术的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 48-53.
[6] 杨倩, 刘万阳, 吕世华, 曲利军. 人工智能技术溯源、医学应用及其在眼科前节疾病的应用现状与展望[J]. 中华眼科医学杂志(电子版), 2018, 08(06): 270-275.
[7] 李刚, 白若濛, 黄琳, 李松果. 兔眼角膜交联术后基质重塑对角膜生物力学稳定性的影响[J]. 中华临床医师杂志(电子版), 2021, 15(07): 537-541.
阅读次数
全文


摘要