[1] |
Zadnik K, Barr JT, Edrington TB, et al. Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study [J]. Invest Ophthalmol Vis Sci, 1998, 39(13): 2537-2546.
|
[2] |
Sharif R, Bak-Nielsen S, Hjortdal J, et al. Pathogenesis of Keratoconus: The intriguing therapeutic potential of prolactin-inducible protein [J]. Prog Retin Eye Res, 2018, 67, 150-167.
|
[3] |
谢江淼,洪晶.圆锥角膜基质环植入术的研究进展[J/CD]. 中华眼科医学杂志(电子版),2021,11(1):48-53.
|
[4] |
Wagner H, Barr J, Zadnik K, et al. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study: methods and findings to date [J]. Cont Lens Anterior Eye, 2007, 30(4): 223-232.
|
[5] |
Spoerl F, Huhle M, Kasper M, et al. Erhöhung der Festigkeit der Hornhaut durch Vernetzung [J]. Ophthalmologe, 1997, 94(12): 902-906.
|
[6] |
McKay TB, Priyadarsini S, Karamichos D. Mechanisms of collagen crosslinking in diabetes and keratoconus [J]. Cells, 2019, 8(10): 1239.
|
[7] |
Järvinen K, Järvinen T, Urtti A. Ocular absorption following topical delivery [J]. Adv Drug Del Rev, 1995, 16(1): 3-19.
|
[8] |
Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus [J]. Am J Ophthalmol, 2003, 135(5): 620-627.
|
[9] |
Wollensak G, Spoerl E, Wilsch M, et al. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit [J]. J Cataract Refract Surg, 2003, 29(9): 1786-1790.
|
[10] |
Ghisla S, Massey V, Lhoste JM, et al. Fluorescence and optical characteristics of reduced flavines and flavoproteins [J]. Biochemistry, 1974, 13(3): 589-597.
|
[11] |
Spörl E, Schreiber J, Hellmund K, et al. Untersuchungen zur Verfestigung der Hornhaut am kaninchen [J]. Ophthalmologe, 2000, 97(3): 203-206.
|
[12] |
Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue [J]. Exp Eye Res, 1998, 66(1): 97-103.
|
[13] |
Hersh PS, Stulting RD, Muller D, et al. United States multicenter clinical trial of corneal collagen crosslinking for keratoconus treatment [J]. Ophthalmology, 2017, 124(9): 1259-1270.
|
[14] |
Soeters N, Wisse RP, Godefrooij DA, et al. Transepithelial versus epithelium-off corneal cross-linking for the treatment of progressive keratoconus: a randomized controlled trial [J]. Am J Ophthalmol, 2015, 159(5): 821-828.
|
[15] |
Ng SM, Ren M, Lindsley KB, et al. Transepithelial versus epithelium-off corneal crosslinking for progressive keratoconus [J]. Cochrane Database Syst Rev, 2021, 3(3):CD013512.
|
[16] |
Wollensak G, Spoerl E, Wilsch M, et al. Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment [J]. Cornea, 2004, 23(1): 43-49.
|
[17] |
Reinstein DZ, Archer TJ, Gobbe M, et al. Epithelial thickness in the normal cornea: three-dimensional display with very high frequency ultrasound [J]. J Refract Surg, 2008, 24(6): 571-581.
|
[18] |
罗顺荣,吴护平,林志荣,等. 高能量紫外光照射的角膜胶原交联术治疗进展期圆锥角膜的安全性及远期疗效分析[J/CD]. 中华眼科医学杂志(电子版),2016,6(6):260-266.
|
[19] |
Tian M, Jian W, Zhang X, et al. Three-year follow-up of accelerated transepithelial corneal cross-linking for progressive paediatric keratoconus [J]. Br J Ophthalmol, 2020, 104(11): 1608-1612.
|
[20] |
Lallemand F, Daull P, Benita S, et al. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb [J].J Drug Deliv, 2012: 604204.
|
[21] |
Freeman PD, Kahook MY. Preservatives in topical ophthalmic medications: historical and clinical perspectives [J]. Expert Review of Ophthalmology, 2009, 4(1): 59-64.
|
[22] |
Wachler BSB. Corneal collagen crosslinking with riboflavin[J]. Cornea, 2004, 23, 503-507.
|
[23] |
Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement [J]. J Cataract Refract Surg, 2009, 35(3): 540-546.
|
[24] |
Kissner A, Spoerl E, Jung R, et al. Pharmacological modification of the epithelial permeability by benzalkonium chloride in UVA/Riboflavin corneal collagen cross-linking [J]. Curr Eye Res, 2010, 35(8): 715-721.
|
[25] |
Ehmke T, Seiler TG, Fischinger I, et al. Comparison of corneal riboflavin gradients using dextran and HPMC Solutions [J]. J Refract Surg, 2016, 32(12): 798-802.
|
[26] |
Ishibashi T, Yokoi N, Kinoshita S. Comparison of the short-term effects on the human corneal surface of topical timolol maleate with and without benzalkonium chloride [J]. J Glaucoma, 2003, 12(6): 486-490.
|
[27] |
Baudouin C. Detrimental effect of preservatives in eyedrops: implications for the treatment of glaucoma [J]. Acta Ophthalmol, 2008, 86(7): 716-726.
|
[28] |
Cha SH, Lee JS, Oum BS, et al. Corneal epithelial cellular dysfunction from benzalkonium chloride (BAC) in vitro[J]. Clin Experiment Ophthalmol, 2004, 32(2): 180-184.
|
[29] |
Kim YH, Jung JC, Jung SY, et al. Comparison of the efficacy of fluorometholone with and without benzalkonium chloride in ocular surface disease [J]. Cornea, 2016, 35(2): 234-242.
|
[30] |
Taneri S, Oehler S, Lytle G, et al. Evaluation of epithelial integrity with various transepithelial corneal cross-linking protocols for treatment of keratoconus [J]. J Ophthalmol, 2014: 614380.
|
[31] |
Al-Hity A, Ramaesh K, Lockington D. EDTA chelation for symptomatic band keratopathy: results and recurrence [J]. Eye, 2018, 32(1): 26-31.
|
[32] |
Ko JA, Yanai R, Nishida T. Up-regulation of ZO-1 expression and barrier function in cultured human corneal epithelial cells by substance P [J]. FEBS Lett, 2009, 583(12): 2148-2153.
|
[33] |
Nakamura T, Yamada M, Teshima M, et al. Electrophysiological characterization of tight junctional pathway of rabbit cornea treated with ophthalmic ingredients [J]. Biol Pharm Bull, 2007, 30(12): 2360-2364.
|
[34] |
Morrison PW, Khutoryanskiy VV. Enhancement in corneal permeability of riboflavin using calcium sequestering compounds[J]. Int J Pharm, 2014, 472(1-2): 56-64.
|
[35] |
Tong YC, Chang SF, Liu CY, et al. Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters[J]. J Gene Med, 2007, 9(11): 956-966.
|
[36] |
Armstrong BK, Lin MP, Ford MR, et al. Biological and biomechanical responses to traditional epithelium-off and transepithelial riboflavin-UVA CXL techniques in rabbits [J]. J Refract Surg, 2013, 29(5): 332-341.
|
[37] |
Torricelli AA, Ford MR, Singh V, et al. BAC-EDTA transepithelial riboflavin-UVA crosslinking has greater biomechanical stiffening effect than standard epithelium-off in rabbit corneas [J]. Exp Eye Res, 2014, 125: 114-117.
|
[38] |
Martone G, Frezzotti P, Tosi GM, et al. An in vivo confocal microscopy analysis of effects of topical antiglaucoma therapy with preservative on corneal innervation and morphology [J]. Am J Ophthalmol, 2009, 147(4): 725-735.
|
[39] |
Irvin RT, Mac Alister TJ, Costerton JW. Tris(hydroxymethyl)aminomethane buffer modification of Escherichia coli outer membrane permeability [J]. J Bacteriol, 1981, 145(3): 1397-1403.
|
[40] |
Nahas GG, Sutin KM, Fermon C, et al. Guidelines for the treatment of acidaemia with THAM [J]. Drugs, 1998, 55(2): 191-224.
|
[41] |
Rossi S, Santamaria C, Boccia R, et al. Standard, transepithelial and iontophoresis corneal cross-linking: clinical analysis of three surgical techniques [J]. Int Ophthalmol, 2018, 38(6): 2585-2592.
|
[42] |
Lombardo M, Serrao S, Raffa P, et al. Novel technique of transepithelial corneal cross-linking using iontophoresis in progressive keratoconus [J]. J Ophthalmol, 2016: 7472542.
|
[43] |
Spadea L, Mencucci R. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas [J]. Clin Ophthalmol, 2012, 6: 1785-1792.
|
[44] |
Cifariello F, Minicucci M, di Renzo F, et al. Epi-off versus Epi-on corneal collagen cross-linking in keratoconus patients: a comparative study through 2-year follow-up [J]. J Ophthalmol, 2018: 4947983.
|
[45] |
Collnot EM, Baldes C, Wempe MF, et al. Influence of vitamin E TPGS poly (ethylene glycol) chain length on apical efflux transporters in Caco-2 cell monolayers [J].J Control Release, 2006, 111(1-2): 35-40.
|
[46] |
Ostacolo C, Caruso C, Tronino D, et al. Enhancement of corneal permeation of riboflavin-5′-phosphate through vitamin E TPGS: a promising approach in corneal trans-epithelial cross linking treatment [J]. Int J Pharm, 2013, 440(2): 148-153.
|
[47] |
Rubinfeld RS, Gum GG, Talamo JH, et al. The effect of sodium iodide on stromal loading, distribution and degradation of riboflavin in a rabbit model of transepithelial corneal crosslinking [J]. Clin Ophthalmol, 2021, 15: 1985-1994.
|
[48] |
Hill J, Liu C, Deardorff P, et al. Optimization of oxygen dynamics, UV-a delivery, and drug formulation for accelerated Epi-on corneal crosslinking [J]. Curr Eye Res, 2020, 45(4): 450-458.
|
[49] |
Gabler B, von Mohrenfels WC, Dreiss AK, et al. Vitality of epithelial cells after alcohol exposure during laser-assisted subepithelial keratectomy flap preparation [J]. J Cataract Refract Surg, 2002, 28(10): 1841-1846.
|
[50] |
Samaras K, O′Brart DP, Doutch J, et al. Effect of epithelial retention and removal on riboflavin absorption in porcine corneas [J]. J Refract Surg, 2009, 25(9): 771-775.
|
[51] |
Bilgihan K, Yesilirmak N, Altay Y, et al. Conventional corneal collagen cross-linking versus transepithelial diluted alcohol and iontophoresis-assisted corneal cross-linking in progressive keratoconus [J]. Cornea, 2017, 36(12): 1492-1497.
|
[52] |
Penedo AC, Tomé VD, Ferreiro AF, et al. Enhancement in corneal permeability of riboflavin using cyclodextrin derivates complexes as a previous step to transepithelial cross-linking [J]. Eur J Pharm Biopharm, 2021, 162: 12-22.
|
[53] |
Leccisotti A, Islam T. Transepithelial corneal collagen cross-linking in keratoconus [J]. J Refract Surg, 2010, 26(12): 942-948.
|
[54] |
Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications [J]. Eur J Pharm Biopharm, 2004, 57(1): 19-34.
|
[55] |
Meadows DL, Paugh JR, Joshi A, et al. A novel method to evaluate residence time in humans using a nonpenetrating fluorescent tracer [J]. Invest Ophthalmol Vis Sci, 2002, 43(4): 1032-1039.
|
[56] |
Hagem AM, Thorsrud A, Sandvik GF, et al. Randomized study of collagen cross-linking with conventional versus accelerated UVA irradiation using riboflavin with hydroxypropyl methylcellulose: Two-year results [J]. Cornea, 2019, 38(2): 203-209.
|