切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2024, Vol. 14 ›› Issue (01) : 1 -5. doi: 10.3877/cma.j.issn.2095-2007.2024.01.001

述评

重视晶状体蛋白聚集在白内障形成中的作用
王玥1, 万修华2,()   
  1. 1. 100730 首都医科大学附属北京同仁医院眼科2024级博士研究生
    2. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科学与视觉科学重点实验室
  • 收稿日期:2024-02-03 出版日期:2024-02-28
  • 通信作者: 万修华
  • 基金资助:
    国家自然科学基金项目(82171037)

Pay attention to the role of lens protein aggregation in the formation of cataracts

Yue Wang1, Xiuhua Wan2,()   

  1. 1. Doctoral degree 2024, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
    2. Beiing Tongren Eye center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing 100730, China
  • Received:2024-02-03 Published:2024-02-28
  • Corresponding author: Xiuhua Wan
引用本文:

王玥, 万修华. 重视晶状体蛋白聚集在白内障形成中的作用[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(01): 1-5.

Yue Wang, Xiuhua Wan. Pay attention to the role of lens protein aggregation in the formation of cataracts[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(01): 1-5.

白内障是全球范围内常见的致盲眼病之一,据世界卫生组织2019年发布的世界视觉报告统计,全球约6520万患者罹患白内障可导致的中重度远视力下降甚或致盲。近年来,随着全球人口老龄化进程的加速,白内障的患病率急剧增加。晶状体的主要成分是晶状体蛋白,可分为α-晶状体蛋白、β-晶状体蛋白及γ-晶状体蛋白等三大家族。这些蛋白质之间相互作用且具有高度有序性,是维持晶状体透明的关键。若蛋白质内或蛋白质间相互作用被破坏则会改变这种微妙的结构暴露出疏水表面,进而可导致晶状体蛋白质聚集和白内障的形成。研究晶状体蛋白间的相互作用和聚集机制有助于阐明白内障形成的分子病理机制,有助于制定预防措施或研发白内障的靶向药物。本文中笔者就近年来晶状体蛋白聚集在白内障形成中作用的研究进展进行述评。

Cataract is one of the common blinding eye diseases worldwide. According to the 2019 World Vision Report released by the World Health Organization, approximately 65.2 million patients worldwide suffer from cataracts, which can lead to moderate to severe visual impairment or even blindness. In recent years, with the acceleration of global population aging, the incidence of cataracts has sharply increased. The main component of the lens is crystalline protein, which can be divided into three major families of crystalline proteins, including α-lens protein β-lens protein and γ-lens protein. These proteins interact with each other with a high degree of orderliness, which is crucial for maintaining the transparency of the lens. If the interactions within or between proteins are disrupted, this subtle structure will be altered to expose hydrophobic surfaces, which can lead to the aggregation of crystalline proteins and the formation of cataracts. The interactions and aggregation mechanisms between crystalline proteins have been demonstrated in the furture, which can help elucidate the molecular pathological mechanisms of cataract formation, and aid in the development of preventive measures or targeted drugs for cataracts. The research progress on the role of lens protein aggregation in cataract formation in recent years were reviewed in this paper.

图1 人眼和晶状体的横切面示意图(本图由Figdraw绘制)
[1]
Bloemendal H, de Jong W, Jaenicke R, et al. Ageing and vision: structure, stability and function of lens crystallins[J]. Prog Biophys Mol Biol, 2004, 86(3): 407-485.
[2]
Bierma JC, Roskamp KW, Ledray AP, et al. Controlling Liquid-Liquid Phase Separation of Cold-Adapted Crystallin Proteins from the Antarctic Toothfish[J]. J Mol Biol, 2018, 430(24): 5151-5168.
[3]
Harding JJ. The lens: development, proteins, metabolism and cataract[J]. Eye, 1984, 18(207): 492.
[4]
Grey AC, Schey KL. Age-related changes in the spatial distribution of human lens alpha-crystallin products by MALDI imaging mass spectrometry[J]. Invest Ophthalmol Vis Sci, 2009, 50(9): 4319-4329.
[5]
de Jong WW, Caspers GJ, Leunissen JA. Genealogy of the alpha-crystallin--small heat-shock protein superfamily[J]. Int J Biol Macromol, 1998, 22(3-4): 151-162.
[6]
Clark AR, Lubsen NH, Slingsby C. SHSP in the eye lens: crystallin mutations, cataract and proteostasis[J]. Int J Biochem Cell Biol, 2012, 44(10): 1687-1697.
[7]
Quax-Jeuken Y, Quax W, van Rens G, et al. Complete structure of the alpha B-crystallin gene: conservation of the exon-intron distribution in the two nonlinked alpha-crystallin genes[J]. Proc Natl Acad Sci USA, 1985, 82(17): 5819-5823.
[8]
Srinivasan AN, Nagineni CN, Bhat SP. alpha A-crystallin is expressed in non-ocular tissues[J]. J Biol Chem, 1992, 267(32): 23337-23341.
[9]
Horwitz J, Huang QL, Ding L, et al. Lens alpha-crystallin: chaperone-like properties[J]. Methods Enzymol, 1998, 290: 365.
[10]
Shiliaev NG, Selivanova OM, Galzitskaya OV. Search for conserved amino acid residues of the α-crystallin proteins of vertebrates[J]. J Bioinform Comput Biol, 2016, 14(2): 1641004.
[11]
Haslbeck M, Peschek J, Buchner J, et al. Structure and function of α-crystallins: Traversing from in vitro to in vivo[J]. Biochim Biophys Acta, 2016, 1860(1): 149-166.
[12]
Vendra VP, Khan I, Chandani S, et al. Gamma crystallins of the human eye lens[J]. Biochim Biophys Acta, 2016, 1860(1): 333.
[13]
Lubsen NH, Aarts HJ, Schoenmakers JG. The evolution of lenticular proteins: the beta- and gamma-crystallin super gene family[J]. Prog Biophys Mol Biol, 1988, 51(1): 47-76.
[14]
Dolinska MB, Sergeev YV, Chan MP, et al. N-terminal extension of beta B1-crystallin: identification of a critical region that modulates protein interaction with beta A3-crystallin[J]. Biochemistry, 2009, 48(40): 9684-9695.
[15]
Purkiss AG, Bateman OA, Goodfellow JM, et al. The X-ray crystal structure of human gamma S-crystallin C-terminal domain[J]. J Biol Chem, 2002, 277(6): 4199-4205.
[16]
Hains PG, Truscott RJ. Proteomic analysis of the oxidation of cysteine residues in human age-related nuclear cataract lenses[J]. Biochim Biophys Acta, 2008, 1784(12): 1959-1964.
[17]
Wilmarth PA, Tanner S, Dasari S, et al. Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens[J]. J Proteome Res, 2006, 5(10): 2554-2566.
[18]
Forsythe HM, Vetter CJ, Jara KA, et al. Altered Protein Dynamics and Increased Aggregation of Human γS-Crystallin Due to Cataract-Associated Deamidations[J]. Biochemistry, 2019, 58(40): 4112.
[19]
Michael R, Bron AJ. The ageing lens and cataract: a model of normal and pathological ageing[J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1568): 1278-1292.
[20]
Norton-Baker B, Mehrabi P, Kwok AO, et al. Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging[J]. Structure, 2022, 30(5): 763-776.
[21]
Kistler J, Bullivant S. Structural and molecular biology of the eye lens membranes[J]. Crit Rev Biochem Mol Biol, 1989, 24(2): 151-181.
[22]
Truscott RJW. Age-related nuclear cataract-oxidation is the key[J]. Exp Eye Res, 2005, 80(5): 709-725.
[23]
Lin HJ, Lai CC, Huang S-Y, et al. An increase in phosphorylation and truncation of crystallin with the p rogression of cataracts[J]. Curr Ther Res Clin Exp, 2013, 74: 9-15.
[24]
Chen Y, Yi L, Yan GQ, et al. Decreased chaperone activity of alpha-crystallins in naphthalene-induced cataract possibly results from C-terminal truncation[J]. J Int Med Res, 2010, 38(3): 1016-1028.
[25]
Kallur LS, Aziz A, Abraham EC. C-Terminal truncation affects subunit exchange of human alphaA-crystal lin with alphaB-crystallin[J]. Mol Cell Biochem, 2008, 308(1-2): 85-91.
[26]
Kelley PB, Abraham EC. Thermally induced disintegration of the oligomeric structure of alphaB-crystallin mutant F28S is associated with diminished chaperone activity[J]. Mol Cell Biochem, 2003, 252(1-2): 273-278.
[27]
Lindner RA, Treweek TM, Carver JA. The molecular chaperone alpha-crystallin is in kinetic competition with aggregation to stabilize a monomeric molten-globule form of alpha-lactalbumin[J]. Biochem J, 2001, 354(1): 79-87.
[28]
Ajaz MS, Ma Z, Smith DL, et al. Size of human lens beta-crystallin aggregates are distinguished by N-terminal truncation of betaB1[J]. J Biol Chem, 1997, 272(17): 11250-11255.
[29]
Leng XY, Wang S, Cao NQ, et al. The N-terminal extension of βB1-crystallin chaperones β-crystallin folding and cooperates with αA-crystallin[J]. Biochemistry, 2014, 53(15): 2464-2473.
[30]
Rao Y, Dong S, Li Z, et al. A novel truncation mutation in CRYBB1 associated with autosomal dominant congenital cataract with nystagmus[J]. Mol Vis, 2017, 23: 624-637.
[31]
Artigas C, Navea A, López-Murcia MM, et al. Spectral transmission of the pig lens: effect of ultraviolet A+B radiation[J]. J Fr Ophtalmol, 2014, 37(10): 773-779.
[32]
Borges-Rodríguez Y, Morales-Cueto R, Rivillas-Acevedo L. Effect of the Ultraviolet Radiation on the Lens[J]. Curr Protein Pept Sci, 2023, 24(3): 215-228.
[33]
Schafheimer N, Wang Z, Schey K, et al. Tyrosine/cysteine cluster sensitizing human γD-crystallin to ultraviolet radiation-induced photoaggregation in vitro[J]. Biochemistry, 2014, 53(6): 979-990.
[34]
Muranov KO, Maloletkina OI, Poliansky NB, et al. Mechanism of aggregation of UV-irradiated βL-crystallin[J]. Exp Eye Res, 2011, 92(1): 76-86.
[35]
Quintanar L, Domínguez-Calva JA, Serebryany E, et al. Copper and Zinc Ions Specifically Promote Nonamyloid Aggregation of the Highly Stable Human γ-D Crystallin[J]. ACS Chemical Biology, 2016, 11(1): 263-272.
[36]
Posadas Y, Sánchez-López C, Quintanar L. Copper binding and protein aggregation: a journey from the brain to the human lens[J]. RSC Chem Biol, 2023, 4(12): 974-985.
[37]
Fernández-Silva A, French-Pacheco L, Rivillas-Acevedo L, et al. Aggregation pathways of human γ D crystallin induced by metal ions revealed by time dependent methods[J]. Peer J, 2020, 8: e9178.
[38]
Solebo AL, Teoh L, Rahi J. Epidemiology of blindness in children[J]. Arch Dis Child, 2017, 102(9): 853-857.
[39]
Darvazi M, Ghorbani M, Ramazi S, et al. A computational study of the R120G mutation in human αB-crystallin: implications for structural stability and functionality[J]. J Biomol Struct Dyn, 2023: 1-11.
[40]
Shiels A, Hejtmancik JF. Biology of Inherited Cataracts and Opportunities for Treatment[J]. Annu Rev Vis Sci, 2019, 5: 123.
[41]
Ma Z, Yao W, Chan C-C, et al. Human βA3/A1-crystallin splicing mutation causes cataracts by activati ng the unfolded protein response and inducing apoptosis in differentia ting lens fiber cells[J]. Biochimica et biophysica acta, 2016, 1862(6): 1214-1227.
[42]
Velasco-Bolom JL, Dominguez L. Conformational stability of the deamidated and mutated human βB2-crystallin[J]. Biophys Chem, 2023, 296: 106986.
[43]
Schmid PWN, Lim NCH, Peters C, et al. Imbalances in the eye lens proteome are linked to cataract formation[J]. Nat Struct Mol Biol, 2021, 28(2): 143-151.
[44]
Bassnett S, Shi Y, Vrensen GF. Biological glass: structural determinants of eye lens transparency[J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1568): 1250-1264.
[45]
Costello MJ, Johnsen S, Metlapally S, et al. Ultrastructural analysis of damage to nuclear fiber cell membranes in advanced age-related cataracts from India[J]. Exp Eye Res, 2008, 87(2): 147.
[46]
Benedek GB. Cataract as a protein condensation disease: the Proctor Lecture[J]. Invest Ophthalmol Vis Sci, 1997, 38(10): 1911-1921.
[47]
Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts[J]. Exp Eye Res, 2017, 156: 95-102.
[48]
Lapp T, Wacker K, Heinz C, et al. Cataract Surgery-Indications, Techniques, and Intraocular Lens Selection[J]. Dtsch Arztebl Int, 2023, 120(21): 377-386.
[49]
Ong HS, Evans JR, Allan BD. Accommodative intraocular lens versus standard monofocal intraocular lens implantation in cataract surgery[J]. Cochrane Database Syst Rev, 2014, 5: CD009667.
[50]
Calladine D, Evans JR, Shah S, et al. Multifocal versus monofocal intraocular lenses after cataract extraction[J]. Sao Paulo Med J, 2015, 133(1): 68.
[51]
Priyadarshini K, Sharma N, Kaur M, et al. Cataract surgery in ocular surface disease[J]. Indian J Ophthalmol, 2023, 71(4): 1167-1175.
[52]
Lee CM, Afshari NA. The global state of cataract blindness[J]. Curr Opin Ophthalmol, 2017, 28(1): 98-103.
[53]
Ma X, Hao J, Jan C, et al. Barriers to uptake of cataract surgery among elderly patients in rural China: a cross-sectional study[J]. BMJ Open, 2024, 14(1): e076116.
[54]
Thrimawithana TR, Rupenthal ID, R?sch SS, et al. Drug delivery to the lens for the management of cataracts[J]. Adv Drug Deliv Rev, 2018, 126: 185-194.
[55]
Zhao L, Chen XJ, Zhu J, et al. Lanosterol reverses protein aggregation in cataracts[J]. Nature, 2015, 523(7562): 607-611.
[56]
Makley LN, McMenimen KA, DeVree BT, et al. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models[J]. Science, 2015, 350(6261): 674-677.
[57]
Chaudhury S, Ghosh I, Saha G, et al. EGCG prevents tryptophan oxidation of cataractous ocular lens human γ-crystallin in presence of H2O2[J]. Int J Biol Macromol, 2015, 77: 287-292.
[58]
Chauhan P, Ghosh KS. Inhibition of copper-induced aggregation of human γD-crystallin by rutin and studies on its role in molecular level for enhancing the chaperone activity of human αA-crystallin by using multi-spectroscopic techniques[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 218: 229-236.
[59]
Varma SD, Kovtun S, Hegde KR. Role of ultraviolet irradiation and oxidative stress in cataract formation-medical prevention by nutritional antioxidants and metabolic agonists[J]. Eye Contact Lens, 2011, 37(4): 233-245.
[60]
Ferreira N, Saraiva MJ, Almeida MR. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation[J]. FEBS Lett, 2011, 585(15): 2424-2430.
[61]
Gong B, Zhang LY, Lam DS, et al. Sodium 4-phenylbutyrate ameliorates the effects of cataract-causing mutant gammaD-crystallin in cultured cells[J]. Mol Vis, 2010, 16: 997-1003.
[62]
Goulet DR, Knee KM, King JA. Inhibition of unfolding and aggregation of lens protein human gamma D crystallin by sodium citrate[J]. Exp Eye Res, 2011, 93(4): 371-381.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[3] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[4] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[5] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[6] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[7] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[8] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[9] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[10] 国文凯, 纪鹏程, 毕靖茹, 谢院生. IgA 肾病的十种治疗措施[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 327-333.
[11] 帖璇, 苏晓乐, 王利华. 抗中性粒细胞胞质抗体相关性血管炎治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 345-351.
[12] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[13] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[14] 张平骥, 徐钰, 李天水, 庞文翼, 符师宁, 张梦圆. 重症患者镇静治疗现状及期望的调查研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 562-567.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要