切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2024, Vol. 14 ›› Issue (01) : 1 -5. doi: 10.3877/cma.j.issn.2095-2007.2024.01.001

述评

重视晶状体蛋白聚集在白内障形成中的作用
王玥1, 万修华2,()   
  1. 1. 100730 首都医科大学附属北京同仁医院眼科2024级博士研究生
    2. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科学与视觉科学重点实验室
  • 收稿日期:2024-02-03 出版日期:2024-02-28
  • 通信作者: 万修华
  • 基金资助:
    国家自然科学基金项目(82171037)

Pay attention to the role of lens protein aggregation in the formation of cataracts

Yue Wang1, Xiuhua Wan2,()   

  1. 1. Doctoral degree 2024, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
    2. Beiing Tongren Eye center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing 100730, China
  • Received:2024-02-03 Published:2024-02-28
  • Corresponding author: Xiuhua Wan
引用本文:

王玥, 万修华. 重视晶状体蛋白聚集在白内障形成中的作用[J]. 中华眼科医学杂志(电子版), 2024, 14(01): 1-5.

Yue Wang, Xiuhua Wan. Pay attention to the role of lens protein aggregation in the formation of cataracts[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(01): 1-5.

白内障是全球范围内常见的致盲眼病之一,据世界卫生组织2019年发布的世界视觉报告统计,全球约6520万患者罹患白内障可导致的中重度远视力下降甚或致盲。近年来,随着全球人口老龄化进程的加速,白内障的患病率急剧增加。晶状体的主要成分是晶状体蛋白,可分为α-晶状体蛋白、β-晶状体蛋白及γ-晶状体蛋白等三大家族。这些蛋白质之间相互作用且具有高度有序性,是维持晶状体透明的关键。若蛋白质内或蛋白质间相互作用被破坏则会改变这种微妙的结构暴露出疏水表面,进而可导致晶状体蛋白质聚集和白内障的形成。研究晶状体蛋白间的相互作用和聚集机制有助于阐明白内障形成的分子病理机制,有助于制定预防措施或研发白内障的靶向药物。本文中笔者就近年来晶状体蛋白聚集在白内障形成中作用的研究进展进行述评。

Cataract is one of the common blinding eye diseases worldwide. According to the 2019 World Vision Report released by the World Health Organization, approximately 65.2 million patients worldwide suffer from cataracts, which can lead to moderate to severe visual impairment or even blindness. In recent years, with the acceleration of global population aging, the incidence of cataracts has sharply increased. The main component of the lens is crystalline protein, which can be divided into three major families of crystalline proteins, including α-lens protein β-lens protein and γ-lens protein. These proteins interact with each other with a high degree of orderliness, which is crucial for maintaining the transparency of the lens. If the interactions within or between proteins are disrupted, this subtle structure will be altered to expose hydrophobic surfaces, which can lead to the aggregation of crystalline proteins and the formation of cataracts. The interactions and aggregation mechanisms between crystalline proteins have been demonstrated in the furture, which can help elucidate the molecular pathological mechanisms of cataract formation, and aid in the development of preventive measures or targeted drugs for cataracts. The research progress on the role of lens protein aggregation in cataract formation in recent years were reviewed in this paper.

图1 人眼和晶状体的横切面示意图(本图由Figdraw绘制)
[1]
Bloemendal H, de Jong W, Jaenicke R, et al. Ageing and vision: structure, stability and function of lens crystallins[J]. Prog Biophys Mol Biol, 2004, 86(3): 407-485.
[2]
Bierma JC, Roskamp KW, Ledray AP, et al. Controlling Liquid-Liquid Phase Separation of Cold-Adapted Crystallin Proteins from the Antarctic Toothfish[J]. J Mol Biol, 2018, 430(24): 5151-5168.
[3]
Harding JJ. The lens: development, proteins, metabolism and cataract[J]. Eye, 1984, 18(207): 492.
[4]
Grey AC, Schey KL. Age-related changes in the spatial distribution of human lens alpha-crystallin products by MALDI imaging mass spectrometry[J]. Invest Ophthalmol Vis Sci, 2009, 50(9): 4319-4329.
[5]
de Jong WW, Caspers GJ, Leunissen JA. Genealogy of the alpha-crystallin--small heat-shock protein superfamily[J]. Int J Biol Macromol, 1998, 22(3-4): 151-162.
[6]
Clark AR, Lubsen NH, Slingsby C. SHSP in the eye lens: crystallin mutations, cataract and proteostasis[J]. Int J Biochem Cell Biol, 2012, 44(10): 1687-1697.
[7]
Quax-Jeuken Y, Quax W, van Rens G, et al. Complete structure of the alpha B-crystallin gene: conservation of the exon-intron distribution in the two nonlinked alpha-crystallin genes[J]. Proc Natl Acad Sci USA, 1985, 82(17): 5819-5823.
[8]
Srinivasan AN, Nagineni CN, Bhat SP. alpha A-crystallin is expressed in non-ocular tissues[J]. J Biol Chem, 1992, 267(32): 23337-23341.
[9]
Horwitz J, Huang QL, Ding L, et al. Lens alpha-crystallin: chaperone-like properties[J]. Methods Enzymol, 1998, 290: 365.
[10]
Shiliaev NG, Selivanova OM, Galzitskaya OV. Search for conserved amino acid residues of the α-crystallin proteins of vertebrates[J]. J Bioinform Comput Biol, 2016, 14(2): 1641004.
[11]
Haslbeck M, Peschek J, Buchner J, et al. Structure and function of α-crystallins: Traversing from in vitro to in vivo[J]. Biochim Biophys Acta, 2016, 1860(1): 149-166.
[12]
Vendra VP, Khan I, Chandani S, et al. Gamma crystallins of the human eye lens[J]. Biochim Biophys Acta, 2016, 1860(1): 333.
[13]
Lubsen NH, Aarts HJ, Schoenmakers JG. The evolution of lenticular proteins: the beta- and gamma-crystallin super gene family[J]. Prog Biophys Mol Biol, 1988, 51(1): 47-76.
[14]
Dolinska MB, Sergeev YV, Chan MP, et al. N-terminal extension of beta B1-crystallin: identification of a critical region that modulates protein interaction with beta A3-crystallin[J]. Biochemistry, 2009, 48(40): 9684-9695.
[15]
Purkiss AG, Bateman OA, Goodfellow JM, et al. The X-ray crystal structure of human gamma S-crystallin C-terminal domain[J]. J Biol Chem, 2002, 277(6): 4199-4205.
[16]
Hains PG, Truscott RJ. Proteomic analysis of the oxidation of cysteine residues in human age-related nuclear cataract lenses[J]. Biochim Biophys Acta, 2008, 1784(12): 1959-1964.
[17]
Wilmarth PA, Tanner S, Dasari S, et al. Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens[J]. J Proteome Res, 2006, 5(10): 2554-2566.
[18]
Forsythe HM, Vetter CJ, Jara KA, et al. Altered Protein Dynamics and Increased Aggregation of Human γS-Crystallin Due to Cataract-Associated Deamidations[J]. Biochemistry, 2019, 58(40): 4112.
[19]
Michael R, Bron AJ. The ageing lens and cataract: a model of normal and pathological ageing[J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1568): 1278-1292.
[20]
Norton-Baker B, Mehrabi P, Kwok AO, et al. Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging[J]. Structure, 2022, 30(5): 763-776.
[21]
Kistler J, Bullivant S. Structural and molecular biology of the eye lens membranes[J]. Crit Rev Biochem Mol Biol, 1989, 24(2): 151-181.
[22]
Truscott RJW. Age-related nuclear cataract-oxidation is the key[J]. Exp Eye Res, 2005, 80(5): 709-725.
[23]
Lin HJ, Lai CC, Huang S-Y, et al. An increase in phosphorylation and truncation of crystallin with the p rogression of cataracts[J]. Curr Ther Res Clin Exp, 2013, 74: 9-15.
[24]
Chen Y, Yi L, Yan GQ, et al. Decreased chaperone activity of alpha-crystallins in naphthalene-induced cataract possibly results from C-terminal truncation[J]. J Int Med Res, 2010, 38(3): 1016-1028.
[25]
Kallur LS, Aziz A, Abraham EC. C-Terminal truncation affects subunit exchange of human alphaA-crystal lin with alphaB-crystallin[J]. Mol Cell Biochem, 2008, 308(1-2): 85-91.
[26]
Kelley PB, Abraham EC. Thermally induced disintegration of the oligomeric structure of alphaB-crystallin mutant F28S is associated with diminished chaperone activity[J]. Mol Cell Biochem, 2003, 252(1-2): 273-278.
[27]
Lindner RA, Treweek TM, Carver JA. The molecular chaperone alpha-crystallin is in kinetic competition with aggregation to stabilize a monomeric molten-globule form of alpha-lactalbumin[J]. Biochem J, 2001, 354(1): 79-87.
[28]
Ajaz MS, Ma Z, Smith DL, et al. Size of human lens beta-crystallin aggregates are distinguished by N-terminal truncation of betaB1[J]. J Biol Chem, 1997, 272(17): 11250-11255.
[29]
Leng XY, Wang S, Cao NQ, et al. The N-terminal extension of βB1-crystallin chaperones β-crystallin folding and cooperates with αA-crystallin[J]. Biochemistry, 2014, 53(15): 2464-2473.
[30]
Rao Y, Dong S, Li Z, et al. A novel truncation mutation in CRYBB1 associated with autosomal dominant congenital cataract with nystagmus[J]. Mol Vis, 2017, 23: 624-637.
[31]
Artigas C, Navea A, López-Murcia MM, et al. Spectral transmission of the pig lens: effect of ultraviolet A+B radiation[J]. J Fr Ophtalmol, 2014, 37(10): 773-779.
[32]
Borges-Rodríguez Y, Morales-Cueto R, Rivillas-Acevedo L. Effect of the Ultraviolet Radiation on the Lens[J]. Curr Protein Pept Sci, 2023, 24(3): 215-228.
[33]
Schafheimer N, Wang Z, Schey K, et al. Tyrosine/cysteine cluster sensitizing human γD-crystallin to ultraviolet radiation-induced photoaggregation in vitro[J]. Biochemistry, 2014, 53(6): 979-990.
[34]
Muranov KO, Maloletkina OI, Poliansky NB, et al. Mechanism of aggregation of UV-irradiated βL-crystallin[J]. Exp Eye Res, 2011, 92(1): 76-86.
[35]
Quintanar L, Domínguez-Calva JA, Serebryany E, et al. Copper and Zinc Ions Specifically Promote Nonamyloid Aggregation of the Highly Stable Human γ-D Crystallin[J]. ACS Chemical Biology, 2016, 11(1): 263-272.
[36]
Posadas Y, Sánchez-López C, Quintanar L. Copper binding and protein aggregation: a journey from the brain to the human lens[J]. RSC Chem Biol, 2023, 4(12): 974-985.
[37]
Fernández-Silva A, French-Pacheco L, Rivillas-Acevedo L, et al. Aggregation pathways of human γ D crystallin induced by metal ions revealed by time dependent methods[J]. Peer J, 2020, 8: e9178.
[38]
Solebo AL, Teoh L, Rahi J. Epidemiology of blindness in children[J]. Arch Dis Child, 2017, 102(9): 853-857.
[39]
Darvazi M, Ghorbani M, Ramazi S, et al. A computational study of the R120G mutation in human αB-crystallin: implications for structural stability and functionality[J]. J Biomol Struct Dyn, 2023: 1-11.
[40]
Shiels A, Hejtmancik JF. Biology of Inherited Cataracts and Opportunities for Treatment[J]. Annu Rev Vis Sci, 2019, 5: 123.
[41]
Ma Z, Yao W, Chan C-C, et al. Human βA3/A1-crystallin splicing mutation causes cataracts by activati ng the unfolded protein response and inducing apoptosis in differentia ting lens fiber cells[J]. Biochimica et biophysica acta, 2016, 1862(6): 1214-1227.
[42]
Velasco-Bolom JL, Dominguez L. Conformational stability of the deamidated and mutated human βB2-crystallin[J]. Biophys Chem, 2023, 296: 106986.
[43]
Schmid PWN, Lim NCH, Peters C, et al. Imbalances in the eye lens proteome are linked to cataract formation[J]. Nat Struct Mol Biol, 2021, 28(2): 143-151.
[44]
Bassnett S, Shi Y, Vrensen GF. Biological glass: structural determinants of eye lens transparency[J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1568): 1250-1264.
[45]
Costello MJ, Johnsen S, Metlapally S, et al. Ultrastructural analysis of damage to nuclear fiber cell membranes in advanced age-related cataracts from India[J]. Exp Eye Res, 2008, 87(2): 147.
[46]
Benedek GB. Cataract as a protein condensation disease: the Proctor Lecture[J]. Invest Ophthalmol Vis Sci, 1997, 38(10): 1911-1921.
[47]
Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts[J]. Exp Eye Res, 2017, 156: 95-102.
[48]
Lapp T, Wacker K, Heinz C, et al. Cataract Surgery-Indications, Techniques, and Intraocular Lens Selection[J]. Dtsch Arztebl Int, 2023, 120(21): 377-386.
[49]
Ong HS, Evans JR, Allan BD. Accommodative intraocular lens versus standard monofocal intraocular lens implantation in cataract surgery[J]. Cochrane Database Syst Rev, 2014, 5: CD009667.
[50]
Calladine D, Evans JR, Shah S, et al. Multifocal versus monofocal intraocular lenses after cataract extraction[J]. Sao Paulo Med J, 2015, 133(1): 68.
[51]
Priyadarshini K, Sharma N, Kaur M, et al. Cataract surgery in ocular surface disease[J]. Indian J Ophthalmol, 2023, 71(4): 1167-1175.
[52]
Lee CM, Afshari NA. The global state of cataract blindness[J]. Curr Opin Ophthalmol, 2017, 28(1): 98-103.
[53]
Ma X, Hao J, Jan C, et al. Barriers to uptake of cataract surgery among elderly patients in rural China: a cross-sectional study[J]. BMJ Open, 2024, 14(1): e076116.
[54]
Thrimawithana TR, Rupenthal ID, R?sch SS, et al. Drug delivery to the lens for the management of cataracts[J]. Adv Drug Deliv Rev, 2018, 126: 185-194.
[55]
Zhao L, Chen XJ, Zhu J, et al. Lanosterol reverses protein aggregation in cataracts[J]. Nature, 2015, 523(7562): 607-611.
[56]
Makley LN, McMenimen KA, DeVree BT, et al. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models[J]. Science, 2015, 350(6261): 674-677.
[57]
Chaudhury S, Ghosh I, Saha G, et al. EGCG prevents tryptophan oxidation of cataractous ocular lens human γ-crystallin in presence of H2O2[J]. Int J Biol Macromol, 2015, 77: 287-292.
[58]
Chauhan P, Ghosh KS. Inhibition of copper-induced aggregation of human γD-crystallin by rutin and studies on its role in molecular level for enhancing the chaperone activity of human αA-crystallin by using multi-spectroscopic techniques[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 218: 229-236.
[59]
Varma SD, Kovtun S, Hegde KR. Role of ultraviolet irradiation and oxidative stress in cataract formation-medical prevention by nutritional antioxidants and metabolic agonists[J]. Eye Contact Lens, 2011, 37(4): 233-245.
[60]
Ferreira N, Saraiva MJ, Almeida MR. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation[J]. FEBS Lett, 2011, 585(15): 2424-2430.
[61]
Gong B, Zhang LY, Lam DS, et al. Sodium 4-phenylbutyrate ameliorates the effects of cataract-causing mutant gammaD-crystallin in cultured cells[J]. Mol Vis, 2010, 16: 997-1003.
[62]
Goulet DR, Knee KM, King JA. Inhibition of unfolding and aggregation of lens protein human gamma D crystallin by sodium citrate[J]. Exp Eye Res, 2011, 93(4): 371-381.
[1] 邓呈亮, 陈君哲, 章一新. 继发性肢体淋巴水肿的外科整合治疗[J]. 中华损伤与修复杂志(电子版), 2024, 19(03): 185-191.
[2] 周煦川, 马戈甲, 苏学峰, 王文飞, 秦傲霜, 刘宾. 规范化综合消肿治疗在亚临床期下肢淋巴水肿中的应用效果[J]. 中华损伤与修复杂志(电子版), 2024, 19(03): 192-197.
[3] 王季, 王淑婷, 肖聪慧, 廖鑫, 严鹭慧, 徐姗姗, 邓呈亮, 王玉龙. 采用综合消肿疗法联合淋巴管-静脉吻合术治疗继发性淋巴水肿的临床效果[J]. 中华损伤与修复杂志(电子版), 2024, 19(03): 198-203.
[4] 蒙燕, 唐如冰, 蒋奕, 陆华, 苏玉兰, 张琼, 何英煜. 基于多学科协作的预防性淋巴管-静脉吻合术在乳腺癌腋窝淋巴结清扫患者中的应用[J]. 中华损伤与修复杂志(电子版), 2024, 19(03): 204-207.
[5] 陈向军, 于丽, 王星, 梁俊青, 吴迪, 李志军. 采用不同方法联合放射治疗修复薄型瘢痕疙瘩的临床疗效分析[J]. 中华损伤与修复杂志(电子版), 2024, 19(03): 215-222.
[6] 沈皓, 张驰, 韩旻轩, 陆晓庆, 周愉, 周莉丽. 骨皮质切开术对正畸治疗牙根吸收影响的Meta分析[J]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 175-184.
[7] 杨林瑞, 陈仁吉. 言语治疗结合经颅磁刺激用于腭裂言语障碍康复的可行性分析[J]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 195-199.
[8] 刘连新, 孟凡征. 不断提高腹腔镜解剖性肝切除的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 355-358.
[9] 李娇娇, 张军, 徐顺. 全程新辅助治疗联合全直肠系膜切除术对局部进展期直肠癌预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 283-286.
[10] 王东阳, 林琳, 娄熙彬. SII对局部进展期胃癌nCRT+腹腔镜胃癌根治术后并发症及预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 315-318.
[11] 黄兴, 王蕾, 夏丹. 靶向免疫治疗时代下减瘤性肾切除术在转移性肾细胞癌治疗中的价值[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 208-213.
[12] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[13] 邓楠, 刘平. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾盂恶性肿瘤并左肾巨大积液[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 296-299.
[14] 邢颖, 程石. 巨脾外科治疗现状与介入治疗序贯手术策略[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 253-258.
[15] 安亚楠, 王端然, 郭甜甜, 武希润. 幽门螺杆菌阴性胃黏膜相关淋巴组织淋巴瘤的研究进展[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 268-274.
阅读次数
全文


摘要