[1] |
Bloemendal H, de Jong W, Jaenicke R, et al. Ageing and vision: structure, stability and function of lens crystallins[J]. Prog Biophys Mol Biol, 2004, 86(3): 407-485.
|
[2] |
Bierma JC, Roskamp KW, Ledray AP, et al. Controlling Liquid-Liquid Phase Separation of Cold-Adapted Crystallin Proteins from the Antarctic Toothfish[J]. J Mol Biol, 2018, 430(24): 5151-5168.
|
[3] |
Harding JJ. The lens: development, proteins, metabolism and cataract[J]. Eye, 1984, 18(207): 492.
|
[4] |
Grey AC, Schey KL. Age-related changes in the spatial distribution of human lens alpha-crystallin products by MALDI imaging mass spectrometry[J]. Invest Ophthalmol Vis Sci, 2009, 50(9): 4319-4329.
|
[5] |
de Jong WW, Caspers GJ, Leunissen JA. Genealogy of the alpha-crystallin--small heat-shock protein superfamily[J]. Int J Biol Macromol, 1998, 22(3-4): 151-162.
|
[6] |
Clark AR, Lubsen NH, Slingsby C. SHSP in the eye lens: crystallin mutations, cataract and proteostasis[J]. Int J Biochem Cell Biol, 2012, 44(10): 1687-1697.
|
[7] |
Quax-Jeuken Y, Quax W, van Rens G, et al. Complete structure of the alpha B-crystallin gene: conservation of the exon-intron distribution in the two nonlinked alpha-crystallin genes[J]. Proc Natl Acad Sci USA, 1985, 82(17): 5819-5823.
|
[8] |
Srinivasan AN, Nagineni CN, Bhat SP. alpha A-crystallin is expressed in non-ocular tissues[J]. J Biol Chem, 1992, 267(32): 23337-23341.
|
[9] |
Horwitz J, Huang QL, Ding L, et al. Lens alpha-crystallin: chaperone-like properties[J]. Methods Enzymol, 1998, 290: 365.
|
[10] |
Shiliaev NG, Selivanova OM, Galzitskaya OV. Search for conserved amino acid residues of the α-crystallin proteins of vertebrates[J]. J Bioinform Comput Biol, 2016, 14(2): 1641004.
|
[11] |
Haslbeck M, Peschek J, Buchner J, et al. Structure and function of α-crystallins: Traversing from in vitro to in vivo[J]. Biochim Biophys Acta, 2016, 1860(1): 149-166.
|
[12] |
Vendra VP, Khan I, Chandani S, et al. Gamma crystallins of the human eye lens[J]. Biochim Biophys Acta, 2016, 1860(1): 333.
|
[13] |
Lubsen NH, Aarts HJ, Schoenmakers JG. The evolution of lenticular proteins: the beta- and gamma-crystallin super gene family[J]. Prog Biophys Mol Biol, 1988, 51(1): 47-76.
|
[14] |
Dolinska MB, Sergeev YV, Chan MP, et al. N-terminal extension of beta B1-crystallin: identification of a critical region that modulates protein interaction with beta A3-crystallin[J]. Biochemistry, 2009, 48(40): 9684-9695.
|
[15] |
Purkiss AG, Bateman OA, Goodfellow JM, et al. The X-ray crystal structure of human gamma S-crystallin C-terminal domain[J]. J Biol Chem, 2002, 277(6): 4199-4205.
|
[16] |
Hains PG, Truscott RJ. Proteomic analysis of the oxidation of cysteine residues in human age-related nuclear cataract lenses[J]. Biochim Biophys Acta, 2008, 1784(12): 1959-1964.
|
[17] |
Wilmarth PA, Tanner S, Dasari S, et al. Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens[J]. J Proteome Res, 2006, 5(10): 2554-2566.
|
[18] |
Forsythe HM, Vetter CJ, Jara KA, et al. Altered Protein Dynamics and Increased Aggregation of Human γS-Crystallin Due to Cataract-Associated Deamidations[J]. Biochemistry, 2019, 58(40): 4112.
|
[19] |
Michael R, Bron AJ. The ageing lens and cataract: a model of normal and pathological ageing[J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1568): 1278-1292.
|
[20] |
Norton-Baker B, Mehrabi P, Kwok AO, et al. Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging[J]. Structure, 2022, 30(5): 763-776.
|
[21] |
Kistler J, Bullivant S. Structural and molecular biology of the eye lens membranes[J]. Crit Rev Biochem Mol Biol, 1989, 24(2): 151-181.
|
[22] |
Truscott RJW. Age-related nuclear cataract-oxidation is the key[J]. Exp Eye Res, 2005, 80(5): 709-725.
|
[23] |
Lin HJ, Lai CC, Huang S-Y, et al. An increase in phosphorylation and truncation of crystallin with the p rogression of cataracts[J]. Curr Ther Res Clin Exp, 2013, 74: 9-15.
|
[24] |
Chen Y, Yi L, Yan GQ, et al. Decreased chaperone activity of alpha-crystallins in naphthalene-induced cataract possibly results from C-terminal truncation[J]. J Int Med Res, 2010, 38(3): 1016-1028.
|
[25] |
Kallur LS, Aziz A, Abraham EC. C-Terminal truncation affects subunit exchange of human alphaA-crystal lin with alphaB-crystallin[J]. Mol Cell Biochem, 2008, 308(1-2): 85-91.
|
[26] |
Kelley PB, Abraham EC. Thermally induced disintegration of the oligomeric structure of alphaB-crystallin mutant F28S is associated with diminished chaperone activity[J]. Mol Cell Biochem, 2003, 252(1-2): 273-278.
|
[27] |
Lindner RA, Treweek TM, Carver JA. The molecular chaperone alpha-crystallin is in kinetic competition with aggregation to stabilize a monomeric molten-globule form of alpha-lactalbumin[J]. Biochem J, 2001, 354(1): 79-87.
|
[28] |
Ajaz MS, Ma Z, Smith DL, et al. Size of human lens beta-crystallin aggregates are distinguished by N-terminal truncation of betaB1[J]. J Biol Chem, 1997, 272(17): 11250-11255.
|
[29] |
Leng XY, Wang S, Cao NQ, et al. The N-terminal extension of βB1-crystallin chaperones β-crystallin folding and cooperates with αA-crystallin[J]. Biochemistry, 2014, 53(15): 2464-2473.
|
[30] |
Rao Y, Dong S, Li Z, et al. A novel truncation mutation in CRYBB1 associated with autosomal dominant congenital cataract with nystagmus[J]. Mol Vis, 2017, 23: 624-637.
|
[31] |
Artigas C, Navea A, López-Murcia MM, et al. Spectral transmission of the pig lens: effect of ultraviolet A+B radiation[J]. J Fr Ophtalmol, 2014, 37(10): 773-779.
|
[32] |
Borges-Rodríguez Y, Morales-Cueto R, Rivillas-Acevedo L. Effect of the Ultraviolet Radiation on the Lens[J]. Curr Protein Pept Sci, 2023, 24(3): 215-228.
|
[33] |
Schafheimer N, Wang Z, Schey K, et al. Tyrosine/cysteine cluster sensitizing human γD-crystallin to ultraviolet radiation-induced photoaggregation in vitro[J]. Biochemistry, 2014, 53(6): 979-990.
|
[34] |
Muranov KO, Maloletkina OI, Poliansky NB, et al. Mechanism of aggregation of UV-irradiated βL-crystallin[J]. Exp Eye Res, 2011, 92(1): 76-86.
|
[35] |
Quintanar L, Domínguez-Calva JA, Serebryany E, et al. Copper and Zinc Ions Specifically Promote Nonamyloid Aggregation of the Highly Stable Human γ-D Crystallin[J]. ACS Chemical Biology, 2016, 11(1): 263-272.
|
[36] |
Posadas Y, Sánchez-López C, Quintanar L. Copper binding and protein aggregation: a journey from the brain to the human lens[J]. RSC Chem Biol, 2023, 4(12): 974-985.
|
[37] |
Fernández-Silva A, French-Pacheco L, Rivillas-Acevedo L, et al. Aggregation pathways of human γ D crystallin induced by metal ions revealed by time dependent methods[J]. Peer J, 2020, 8: e9178.
|
[38] |
Solebo AL, Teoh L, Rahi J. Epidemiology of blindness in children[J]. Arch Dis Child, 2017, 102(9): 853-857.
|
[39] |
Darvazi M, Ghorbani M, Ramazi S, et al. A computational study of the R120G mutation in human αB-crystallin: implications for structural stability and functionality[J]. J Biomol Struct Dyn, 2023: 1-11.
|
[40] |
Shiels A, Hejtmancik JF. Biology of Inherited Cataracts and Opportunities for Treatment[J]. Annu Rev Vis Sci, 2019, 5: 123.
|
[41] |
Ma Z, Yao W, Chan C-C, et al. Human βA3/A1-crystallin splicing mutation causes cataracts by activati ng the unfolded protein response and inducing apoptosis in differentia ting lens fiber cells[J]. Biochimica et biophysica acta, 2016, 1862(6): 1214-1227.
|
[42] |
Velasco-Bolom JL, Dominguez L. Conformational stability of the deamidated and mutated human βB2-crystallin[J]. Biophys Chem, 2023, 296: 106986.
|
[43] |
Schmid PWN, Lim NCH, Peters C, et al. Imbalances in the eye lens proteome are linked to cataract formation[J]. Nat Struct Mol Biol, 2021, 28(2): 143-151.
|
[44] |
Bassnett S, Shi Y, Vrensen GF. Biological glass: structural determinants of eye lens transparency[J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1568): 1250-1264.
|
[45] |
Costello MJ, Johnsen S, Metlapally S, et al. Ultrastructural analysis of damage to nuclear fiber cell membranes in advanced age-related cataracts from India[J]. Exp Eye Res, 2008, 87(2): 147.
|
[46] |
Benedek GB. Cataract as a protein condensation disease: the Proctor Lecture[J]. Invest Ophthalmol Vis Sci, 1997, 38(10): 1911-1921.
|
[47] |
Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts[J]. Exp Eye Res, 2017, 156: 95-102.
|
[48] |
Lapp T, Wacker K, Heinz C, et al. Cataract Surgery-Indications, Techniques, and Intraocular Lens Selection[J]. Dtsch Arztebl Int, 2023, 120(21): 377-386.
|
[49] |
Ong HS, Evans JR, Allan BD. Accommodative intraocular lens versus standard monofocal intraocular lens implantation in cataract surgery[J]. Cochrane Database Syst Rev, 2014, 5: CD009667.
|
[50] |
Calladine D, Evans JR, Shah S, et al. Multifocal versus monofocal intraocular lenses after cataract extraction[J]. Sao Paulo Med J, 2015, 133(1): 68.
|
[51] |
Priyadarshini K, Sharma N, Kaur M, et al. Cataract surgery in ocular surface disease[J]. Indian J Ophthalmol, 2023, 71(4): 1167-1175.
|
[52] |
Lee CM, Afshari NA. The global state of cataract blindness[J]. Curr Opin Ophthalmol, 2017, 28(1): 98-103.
|
[53] |
Ma X, Hao J, Jan C, et al. Barriers to uptake of cataract surgery among elderly patients in rural China: a cross-sectional study[J]. BMJ Open, 2024, 14(1): e076116.
|
[54] |
Thrimawithana TR, Rupenthal ID, R?sch SS, et al. Drug delivery to the lens for the management of cataracts[J]. Adv Drug Deliv Rev, 2018, 126: 185-194.
|
[55] |
Zhao L, Chen XJ, Zhu J, et al. Lanosterol reverses protein aggregation in cataracts[J]. Nature, 2015, 523(7562): 607-611.
|
[56] |
Makley LN, McMenimen KA, DeVree BT, et al. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models[J]. Science, 2015, 350(6261): 674-677.
|
[57] |
Chaudhury S, Ghosh I, Saha G, et al. EGCG prevents tryptophan oxidation of cataractous ocular lens human γ-crystallin in presence of H2O2[J]. Int J Biol Macromol, 2015, 77: 287-292.
|
[58] |
Chauhan P, Ghosh KS. Inhibition of copper-induced aggregation of human γD-crystallin by rutin and studies on its role in molecular level for enhancing the chaperone activity of human αA-crystallin by using multi-spectroscopic techniques[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 218: 229-236.
|
[59] |
Varma SD, Kovtun S, Hegde KR. Role of ultraviolet irradiation and oxidative stress in cataract formation-medical prevention by nutritional antioxidants and metabolic agonists[J]. Eye Contact Lens, 2011, 37(4): 233-245.
|
[60] |
Ferreira N, Saraiva MJ, Almeida MR. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation[J]. FEBS Lett, 2011, 585(15): 2424-2430.
|
[61] |
Gong B, Zhang LY, Lam DS, et al. Sodium 4-phenylbutyrate ameliorates the effects of cataract-causing mutant gammaD-crystallin in cultured cells[J]. Mol Vis, 2010, 16: 997-1003.
|
[62] |
Goulet DR, Knee KM, King JA. Inhibition of unfolding and aggregation of lens protein human gamma D crystallin by sodium citrate[J]. Exp Eye Res, 2011, 93(4): 371-381.
|