[1] |
GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study [J]. Lancet Glob Health, 2021, 9(2): e144-e160.
|
[2] |
Goh JHL, Lim ZW, Fang X, et al. Artificial Intelligence for Cataract Detection and Management [J]. Asia Pac J Ophthalmol (Phila), 2020, 9(2): 88-95.
|
[3] |
Asbell PA, Dualan I, Mindel J, et al. Age-related cataract [J]. Lancet, 2005, 365(9459): 599-609.
|
[4] |
Liu YC, Wilkins M, Kim T, et al. Cataracts [J]. Lancet, 2017, 390(10094): 600-612.
|
[5] |
Chylack LT, Wolfe JK, Singer DM, et al. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group [J]. Arch Ophthalmol, 1993, 111(6): 831-836.
|
[6] |
Klein BE, Klein R, Linton KL, et al. Assessment of cataracts from photographs in the Beaver Dam Eye Study [J]. Ophthalmology, 1990, 97(11): 1428-1433.
|
[7] |
Xu X, Li J, Guan Y, et al. GLA-Net: A global-local attention network for automatic cataract classification [J]. J Biomed Inform, 2021, 124: 103939.
|
[8] |
Zhang X, Xiao Z, Higashita R, et al. Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image [J]. J Biomed Inform, 2022, 128: 104037.
|
[9] |
Gan F, Liu H, Qin WG, et al. Application of artificial intelligence for automatic cataract staging based on anterior segment images: comparing automatic segmentation approaches to manual segmentation [J]. Front Neurosci, 2023, 17: 1182388.
|
[10] |
Lu Q, Wei L, He W, et al. Lens Opacities Classification System III-based artificial intelligence program for automatic cataract grading [J]. J Cataract Refract Surg, 2022, 48(5): 528-534.
|
[11] |
Han Y, Li W, Liu M, et al. Application of an Anomaly Detection Model to Screen for Ocular Diseases Using Color Retinal Fundus Images: Design and Evaluation Study [J]. J Med Internet Res, 2021, 23(7): e27822.
|
[12] |
Gao X, Lin S, Wong TY. Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning [J]. IEEE Trans Biomed Eng, 2015, 62(11): 2693-2701.
|
[13] |
Zhang X, Xiao Z, Li X, et al. Mixed pyramid attention network for nuclear cataract classification based on anterior segment OCT images [J]. Health Inf Sci Syst, 2022, 10(1): 3.
|
[14] |
Anwar SM, Majid M, Qayyum A, et al. Medical Image Analysis using Convolutional Neural Networks: A Review [J]. J Med Syst, 2018, 42(11): 226.
|
[15] |
Pratap T, Kokil P. Efficient network selection for computer-aided cataract diagnosis under noisy environment [J]. Comput Methods Programs Biomed, 2021, 200: 105927.
|
[16] |
Acharya RU, Yu W, Zhu K, et al. Identification of cataract and post-cataract surgery optical images using artificial intelligence techniques [J]. J Med Syst, 2010, 34(4): 619-628.
|
[17] |
Li H, Lim JH, Liu J, et al. A computer-aided diagnosis system of nuclear cataract [J]. IEEE Trans Biomed Eng, 2010, 57(7): 1690-1698.
|
[18] |
Svm, RG. Computer-Aided Diagnosis of Anterior Segment Eye Abnormalities using Visible Wavelength Image Analysis Based Machine Learning [J]. J Med Syst, 2018, 42(7): 128.
|
[19] |
Keenan TDL, Chen Q, Agrón E, et al. DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity [J]. Ophthalmology, 2022, 129(5): 571-584.
|
[20] |
Hu S, Luan X, Wu H, et al. ACCV: automatic classification algorithm of cataract video based on deep learning [J]. Biomed Eng Online, 2021, 20(1): 78.
|
[21] |
Wu X, Huang Y, Liu Z, et al. Universal artificial intelligence platform for collaborative management of cataracts [J]. Br J Ophthalmol, 2019, 103(11): 1553-1560.
|
[22] |
Gali HE, Sella R, Afshari NA. Cataract grading systems: a review of past and present [J]. Curr Opin Ophthalmol, 2019, 30(1): 13-18.
|
[23] |
Yang JJ, Li J, Shen R, et al. Exploiting ensemble learning for automatic cataract detection and grading [J]. Comput Methods Programs Biomed, 2016, 124: 45-57.
|
[24] |
Zhang H, Niu K, Xiong Y, et al. Automatic cataract grading methods based on deep learning [J]. Comput Methods Programs Biomed, 2019, 182: 104978.
|
[25] |
Zhou Y, Li G, Li H. Automatic Cataract Classification Using Deep Neural Network With Discrete State Transition [J]. IEEE Trans Med Imaging, 2020, 39(2): 436-446.
|
[26] |
Tham YC, Goh JHL, Anees A, et al. Detecting visually significant cataract using retinal photograph-based deep learning [J]. Nat Aging, 2022, 2(3): 264-271.
|
[27] |
Xu X, Zhang L, Li J, et al. A Hybrid Global-Local Representation CNN Model for Automatic Cataract Grading [J]. IEEE J Biomed Health Inform, 2020, 24(2): 556-567.
|
[28] |
Wu X, Xu D, Ma T, et al. Artificial Intelligence Model for Antiinterference Cataract Automatic Diagnosis: A Diagnostic Accuracy Study [J]. Front Cell Dev Biol, 2022, 10: 906042.
|
[29] |
Luo X, Li J, Chen M, et al. Ophthalmic Disease Detection via Deep Learning With a Novel Mixture Loss Function [J]. IEEE J Biomed Health Inform, 2021, 25(9): 3332-3339.
|
[30] |
Rafay A, Asghar Z, Manzoor H, et al. EyeCNN: exploring the potential of convolutional neural networks for identification of multiple eye diseases through retinal imagery [J]. Int Ophthalmol, 2023, 43(10): 3569-3586.
|
[31] |
Glaret Subin P, Muthukannan P. Optimized convolution neural network based multiple eye disease detection [J]. Comput Biol Med, 2022, 146: 105648.
|
[32] |
Zhang X, Xiao Z, Fu H, et al. Attention to region: Region-based integration-and-recalibration networks for nuclear cataract classification using AS-OCT images [J]. Med Image Anal, 2022, 80: 102499.
|
[33] |
Ahn H, Jun I, Seo KY, et al. Artificial Intelligence for the Estimation of Visual Acuity Using Multi-Source Anterior Segment Optical Coherence Tomographic Images in Senile Cataract [J]. Front Med (Lausanne), 2022, 9: 871382.
|
[34] |
Askarian B, Ho P, Chong JW. Detecting Cataract Using Smartphones [J]. IEEE J Transl Eng Health Med, 2021, 9: 3800110.
|