切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (06) : 361 -365. doi: 10.3877/cma.j.issn.2095-2007.2023.06.008

综述

人工智能在白内障诊断领域的应用进展
谢家兴1, 李学民2, 敖明昕2,()   
  1. 1. 100191 北京大学医学部2020级临床医学本科生
    2. 100191 北京大学第三医院眼科 眼部神经损伤的重建保护与康复北京市重点实验室
  • 收稿日期:2023-11-08 出版日期:2023-12-28
  • 通信作者: 敖明昕
  • 基金资助:
    北京市自然科学基金项目(7202229)

The application progress of artificial intelligence in cataract diagnosis

Jiaxing Xie1, Xuemin Li2, Mingxin Ao2,()   

  1. 1. Bachelor′s degree in 2020 (majoring in Clinical Medicine), Peking University Health Science Center, Beijing 100191, China
    2. Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
  • Received:2023-11-08 Published:2023-12-28
  • Corresponding author: Mingxin Ao
引用本文:

谢家兴, 李学民, 敖明昕. 人工智能在白内障诊断领域的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 361-365.

Jiaxing Xie, Xuemin Li, Mingxin Ao. The application progress of artificial intelligence in cataract diagnosis[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(06): 361-365.

近年来,伴随社会人口老龄化进程白内障的患病率不断攀升。为缓解医疗资源配置的不足,基于裂隙灯显微镜图像、彩色眼底图像以及相干光断层扫描图像的人工智能白内障辅助诊断技术在白内障筛查和分级诊断中发挥了应用效能。其中,经典的机器学习算法依据特征被应用于图像分类,通过集成学习或融合特征的方法可综合图像信息提升分类性能,深度学习算法可自动从原始图像中提取隐含特征。目前,人工智能技术已基本具备了对白内障的规模化筛查与诊断能力。本文中笔者就近年来人工智能在白内障诊断领域的应用进展进行综述。

In recent years, with the aging of the population, the incidence of cataracts has been continuously increasing. To alleviate the shortage of medical resource allocation, artificial intelligence cataract assisted diagnosis technology based on slit lamp microscopy images, color fundus images, and coherent light tomography images has played an application role in cataract screening and grading diagnosis. Among them, classic machine learning algorithms are applied to image classification based on features. By integrating learning or fusing features, classification performance can be improved by integrating image information. Deep learning algorithms can automatically extract hidden features from the original image. At present, artificial intelligence technology has basically had the capability of screening and diagnosis for cataracts on a large scale. The application progress of artificial intelligence in the field of cataract diagnosis in recent years was reviewed in this paper.

表1 经典机器学习法和深度学习法在白内障诊断中的应用场景和优缺点
表2 基于裂隙灯显微镜图像的人工智能研究在不同类型白内障上的诊断效果和性能差异
表3 基于眼底图像的人工智能研究在不同类型白内障上的诊断效果和性能差异
[1]
GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study [J]. Lancet Glob Health, 2021, 9(2): e144-e160.
[2]
Goh JHL, Lim ZW, Fang X, et al. Artificial Intelligence for Cataract Detection and Management [J]. Asia Pac J Ophthalmol (Phila), 2020, 9(2): 88-95.
[3]
Asbell PA, Dualan I, Mindel J, et al. Age-related cataract [J]. Lancet, 2005, 365(9459): 599-609.
[4]
Liu YC, Wilkins M, Kim T, et al. Cataracts [J]. Lancet, 2017, 390(10094): 600-612.
[5]
Chylack LT, Wolfe JK, Singer DM, et al. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group [J]. Arch Ophthalmol, 1993, 111(6): 831-836.
[6]
Klein BE, Klein R, Linton KL, et al. Assessment of cataracts from photographs in the Beaver Dam Eye Study [J]. Ophthalmology, 1990, 97(11): 1428-1433.
[7]
Xu X, Li J, Guan Y, et al. GLA-Net: A global-local attention network for automatic cataract classification [J]. J Biomed Inform, 2021, 124: 103939.
[8]
Zhang X, Xiao Z, Higashita R, et al. Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image [J]. J Biomed Inform, 2022, 128: 104037.
[9]
Gan F, Liu H, Qin WG, et al. Application of artificial intelligence for automatic cataract staging based on anterior segment images: comparing automatic segmentation approaches to manual segmentation [J]. Front Neurosci, 2023, 17: 1182388.
[10]
Lu Q, Wei L, He W, et al. Lens Opacities Classification System III-based artificial intelligence program for automatic cataract grading [J]. J Cataract Refract Surg, 2022, 48(5): 528-534.
[11]
Han Y, Li W, Liu M, et al. Application of an Anomaly Detection Model to Screen for Ocular Diseases Using Color Retinal Fundus Images: Design and Evaluation Study [J]. J Med Internet Res, 2021, 23(7): e27822.
[12]
Gao X, Lin S, Wong TY. Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning [J]. IEEE Trans Biomed Eng, 2015, 62(11): 2693-2701.
[13]
Zhang X, Xiao Z, Li X, et al. Mixed pyramid attention network for nuclear cataract classification based on anterior segment OCT images [J]. Health Inf Sci Syst, 2022, 10(1): 3.
[14]
Anwar SM, Majid M, Qayyum A, et al. Medical Image Analysis using Convolutional Neural Networks: A Review [J]. J Med Syst, 2018, 42(11): 226.
[15]
Pratap T, Kokil P. Efficient network selection for computer-aided cataract diagnosis under noisy environment [J]. Comput Methods Programs Biomed, 2021, 200: 105927.
[16]
Acharya RU, Yu W, Zhu K, et al. Identification of cataract and post-cataract surgery optical images using artificial intelligence techniques [J]. J Med Syst, 2010, 34(4): 619-628.
[17]
Li H, Lim JH, Liu J, et al. A computer-aided diagnosis system of nuclear cataract [J]. IEEE Trans Biomed Eng, 2010, 57(7): 1690-1698.
[18]
Svm, RG. Computer-Aided Diagnosis of Anterior Segment Eye Abnormalities using Visible Wavelength Image Analysis Based Machine Learning [J]. J Med Syst, 2018, 42(7): 128.
[19]
Keenan TDL, Chen Q, Agrón E, et al. DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity [J]. Ophthalmology, 2022, 129(5): 571-584.
[20]
Hu S, Luan X, Wu H, et al. ACCV: automatic classification algorithm of cataract video based on deep learning [J]. Biomed Eng Online, 2021, 20(1): 78.
[21]
Wu X, Huang Y, Liu Z, et al. Universal artificial intelligence platform for collaborative management of cataracts [J]. Br J Ophthalmol, 2019, 103(11): 1553-1560.
[22]
Gali HE, Sella R, Afshari NA. Cataract grading systems: a review of past and present [J]. Curr Opin Ophthalmol, 2019, 30(1): 13-18.
[23]
Yang JJ, Li J, Shen R, et al. Exploiting ensemble learning for automatic cataract detection and grading [J]. Comput Methods Programs Biomed, 2016, 124: 45-57.
[24]
Zhang H, Niu K, Xiong Y, et al. Automatic cataract grading methods based on deep learning [J]. Comput Methods Programs Biomed, 2019, 182: 104978.
[25]
Zhou Y, Li G, Li H. Automatic Cataract Classification Using Deep Neural Network With Discrete State Transition [J]. IEEE Trans Med Imaging, 2020, 39(2): 436-446.
[26]
Tham YC, Goh JHL, Anees A, et al. Detecting visually significant cataract using retinal photograph-based deep learning [J]. Nat Aging, 2022, 2(3): 264-271.
[27]
Xu X, Zhang L, Li J, et al. A Hybrid Global-Local Representation CNN Model for Automatic Cataract Grading [J]. IEEE J Biomed Health Inform, 2020, 24(2): 556-567.
[28]
Wu X, Xu D, Ma T, et al. Artificial Intelligence Model for Antiinterference Cataract Automatic Diagnosis: A Diagnostic Accuracy Study [J]. Front Cell Dev Biol, 2022, 10: 906042.
[29]
Luo X, Li J, Chen M, et al. Ophthalmic Disease Detection via Deep Learning With a Novel Mixture Loss Function [J]. IEEE J Biomed Health Inform, 2021, 25(9): 3332-3339.
[30]
Rafay A, Asghar Z, Manzoor H, et al. EyeCNN: exploring the potential of convolutional neural networks for identification of multiple eye diseases through retinal imagery [J]. Int Ophthalmol, 2023, 43(10): 3569-3586.
[31]
Glaret Subin P, Muthukannan P. Optimized convolution neural network based multiple eye disease detection [J]. Comput Biol Med, 2022, 146: 105648.
[32]
Zhang X, Xiao Z, Fu H, et al. Attention to region: Region-based integration-and-recalibration networks for nuclear cataract classification using AS-OCT images [J]. Med Image Anal, 2022, 80: 102499.
[33]
Ahn H, Jun I, Seo KY, et al. Artificial Intelligence for the Estimation of Visual Acuity Using Multi-Source Anterior Segment Optical Coherence Tomographic Images in Senile Cataract [J]. Front Med (Lausanne), 2022, 9: 871382.
[34]
Askarian B, Ho P, Chong JW. Detecting Cataract Using Smartphones [J]. IEEE J Transl Eng Health Med, 2021, 9: 3800110.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[4] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[5] 戴雨霖, 张新春. 人工智能在口腔修复诊疗中的应用与进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 65-69.
[6] 杨龙雨禾, 王跃强, 招云亮, 金溪, 卫娜, 杨智明, 张贵福. 人工智能辅助临床决策在泌尿系肿瘤的应用进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 178-182.
[7] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[8] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[9] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[10] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[11] 刘谨硕, 朱思泉. 前房角检查的临床应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 316-320.
[12] 王守森, 方翌, 冯添顺, 魏梁锋. 深度学习模型在侵袭性垂体腺瘤诊疗中的应用[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 382-384.
[13] 邱凯锋, 王则远, 何志超, 付凯利, 梅童霖, 关英杰, 高飞, 伍俊妍. 人工智能技术在超说明书用药循证中的应用研究[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1212-1218.
[14] 林绍涌, 朱先理, 魏梁锋, 王守森. ChatGPT在临床医学实践中的应用进展[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1113-1116.
[15] 陈健, 张子豪, 卢勇达, 夏开建, 王甘红, 刘罗杰, 徐晓丹. 基于深度学习构建结直肠息肉诊断自动分类模型[J]. 中华诊断学电子杂志, 2024, 12(01): 9-17.
阅读次数
全文


摘要