切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (06) : 361 -365. doi: 10.3877/cma.j.issn.2095-2007.2023.06.008

综述

人工智能在白内障诊断领域的应用进展
谢家兴1, 李学民2, 敖明昕2,()   
  1. 1. 100191 北京大学医学部2020级临床医学本科生
    2. 100191 北京大学第三医院眼科 眼部神经损伤的重建保护与康复北京市重点实验室
  • 收稿日期:2023-11-08 出版日期:2023-12-28
  • 通信作者: 敖明昕
  • 基金资助:
    北京市自然科学基金项目(7202229)

The application progress of artificial intelligence in cataract diagnosis

Jiaxing Xie1, Xuemin Li2, Mingxin Ao2,()   

  1. 1. Bachelor′s degree in 2020 (majoring in Clinical Medicine), Peking University Health Science Center, Beijing 100191, China
    2. Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
  • Received:2023-11-08 Published:2023-12-28
  • Corresponding author: Mingxin Ao
引用本文:

谢家兴, 李学民, 敖明昕. 人工智能在白内障诊断领域的应用进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(06): 361-365.

Jiaxing Xie, Xuemin Li, Mingxin Ao. The application progress of artificial intelligence in cataract diagnosis[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(06): 361-365.

近年来,伴随社会人口老龄化进程白内障的患病率不断攀升。为缓解医疗资源配置的不足,基于裂隙灯显微镜图像、彩色眼底图像以及相干光断层扫描图像的人工智能白内障辅助诊断技术在白内障筛查和分级诊断中发挥了应用效能。其中,经典的机器学习算法依据特征被应用于图像分类,通过集成学习或融合特征的方法可综合图像信息提升分类性能,深度学习算法可自动从原始图像中提取隐含特征。目前,人工智能技术已基本具备了对白内障的规模化筛查与诊断能力。本文中笔者就近年来人工智能在白内障诊断领域的应用进展进行综述。

In recent years, with the aging of the population, the incidence of cataracts has been continuously increasing. To alleviate the shortage of medical resource allocation, artificial intelligence cataract assisted diagnosis technology based on slit lamp microscopy images, color fundus images, and coherent light tomography images has played an application role in cataract screening and grading diagnosis. Among them, classic machine learning algorithms are applied to image classification based on features. By integrating learning or fusing features, classification performance can be improved by integrating image information. Deep learning algorithms can automatically extract hidden features from the original image. At present, artificial intelligence technology has basically had the capability of screening and diagnosis for cataracts on a large scale. The application progress of artificial intelligence in the field of cataract diagnosis in recent years was reviewed in this paper.

表1 经典机器学习法和深度学习法在白内障诊断中的应用场景和优缺点
表2 基于裂隙灯显微镜图像的人工智能研究在不同类型白内障上的诊断效果和性能差异
表3 基于眼底图像的人工智能研究在不同类型白内障上的诊断效果和性能差异
[1]
GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study [J]. Lancet Glob Health, 2021, 9(2): e144-e160.
[2]
Goh JHL, Lim ZW, Fang X, et al. Artificial Intelligence for Cataract Detection and Management [J]. Asia Pac J Ophthalmol (Phila), 2020, 9(2): 88-95.
[3]
Asbell PA, Dualan I, Mindel J, et al. Age-related cataract [J]. Lancet, 2005, 365(9459): 599-609.
[4]
Liu YC, Wilkins M, Kim T, et al. Cataracts [J]. Lancet, 2017, 390(10094): 600-612.
[5]
Chylack LT, Wolfe JK, Singer DM, et al. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group [J]. Arch Ophthalmol, 1993, 111(6): 831-836.
[6]
Klein BE, Klein R, Linton KL, et al. Assessment of cataracts from photographs in the Beaver Dam Eye Study [J]. Ophthalmology, 1990, 97(11): 1428-1433.
[7]
Xu X, Li J, Guan Y, et al. GLA-Net: A global-local attention network for automatic cataract classification [J]. J Biomed Inform, 2021, 124: 103939.
[8]
Zhang X, Xiao Z, Higashita R, et al. Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image [J]. J Biomed Inform, 2022, 128: 104037.
[9]
Gan F, Liu H, Qin WG, et al. Application of artificial intelligence for automatic cataract staging based on anterior segment images: comparing automatic segmentation approaches to manual segmentation [J]. Front Neurosci, 2023, 17: 1182388.
[10]
Lu Q, Wei L, He W, et al. Lens Opacities Classification System III-based artificial intelligence program for automatic cataract grading [J]. J Cataract Refract Surg, 2022, 48(5): 528-534.
[11]
Han Y, Li W, Liu M, et al. Application of an Anomaly Detection Model to Screen for Ocular Diseases Using Color Retinal Fundus Images: Design and Evaluation Study [J]. J Med Internet Res, 2021, 23(7): e27822.
[12]
Gao X, Lin S, Wong TY. Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning [J]. IEEE Trans Biomed Eng, 2015, 62(11): 2693-2701.
[13]
Zhang X, Xiao Z, Li X, et al. Mixed pyramid attention network for nuclear cataract classification based on anterior segment OCT images [J]. Health Inf Sci Syst, 2022, 10(1): 3.
[14]
Anwar SM, Majid M, Qayyum A, et al. Medical Image Analysis using Convolutional Neural Networks: A Review [J]. J Med Syst, 2018, 42(11): 226.
[15]
Pratap T, Kokil P. Efficient network selection for computer-aided cataract diagnosis under noisy environment [J]. Comput Methods Programs Biomed, 2021, 200: 105927.
[16]
Acharya RU, Yu W, Zhu K, et al. Identification of cataract and post-cataract surgery optical images using artificial intelligence techniques [J]. J Med Syst, 2010, 34(4): 619-628.
[17]
Li H, Lim JH, Liu J, et al. A computer-aided diagnosis system of nuclear cataract [J]. IEEE Trans Biomed Eng, 2010, 57(7): 1690-1698.
[18]
Svm, RG. Computer-Aided Diagnosis of Anterior Segment Eye Abnormalities using Visible Wavelength Image Analysis Based Machine Learning [J]. J Med Syst, 2018, 42(7): 128.
[19]
Keenan TDL, Chen Q, Agrón E, et al. DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity [J]. Ophthalmology, 2022, 129(5): 571-584.
[20]
Hu S, Luan X, Wu H, et al. ACCV: automatic classification algorithm of cataract video based on deep learning [J]. Biomed Eng Online, 2021, 20(1): 78.
[21]
Wu X, Huang Y, Liu Z, et al. Universal artificial intelligence platform for collaborative management of cataracts [J]. Br J Ophthalmol, 2019, 103(11): 1553-1560.
[22]
Gali HE, Sella R, Afshari NA. Cataract grading systems: a review of past and present [J]. Curr Opin Ophthalmol, 2019, 30(1): 13-18.
[23]
Yang JJ, Li J, Shen R, et al. Exploiting ensemble learning for automatic cataract detection and grading [J]. Comput Methods Programs Biomed, 2016, 124: 45-57.
[24]
Zhang H, Niu K, Xiong Y, et al. Automatic cataract grading methods based on deep learning [J]. Comput Methods Programs Biomed, 2019, 182: 104978.
[25]
Zhou Y, Li G, Li H. Automatic Cataract Classification Using Deep Neural Network With Discrete State Transition [J]. IEEE Trans Med Imaging, 2020, 39(2): 436-446.
[26]
Tham YC, Goh JHL, Anees A, et al. Detecting visually significant cataract using retinal photograph-based deep learning [J]. Nat Aging, 2022, 2(3): 264-271.
[27]
Xu X, Zhang L, Li J, et al. A Hybrid Global-Local Representation CNN Model for Automatic Cataract Grading [J]. IEEE J Biomed Health Inform, 2020, 24(2): 556-567.
[28]
Wu X, Xu D, Ma T, et al. Artificial Intelligence Model for Antiinterference Cataract Automatic Diagnosis: A Diagnostic Accuracy Study [J]. Front Cell Dev Biol, 2022, 10: 906042.
[29]
Luo X, Li J, Chen M, et al. Ophthalmic Disease Detection via Deep Learning With a Novel Mixture Loss Function [J]. IEEE J Biomed Health Inform, 2021, 25(9): 3332-3339.
[30]
Rafay A, Asghar Z, Manzoor H, et al. EyeCNN: exploring the potential of convolutional neural networks for identification of multiple eye diseases through retinal imagery [J]. Int Ophthalmol, 2023, 43(10): 3569-3586.
[31]
Glaret Subin P, Muthukannan P. Optimized convolution neural network based multiple eye disease detection [J]. Comput Biol Med, 2022, 146: 105648.
[32]
Zhang X, Xiao Z, Fu H, et al. Attention to region: Region-based integration-and-recalibration networks for nuclear cataract classification using AS-OCT images [J]. Med Image Anal, 2022, 80: 102499.
[33]
Ahn H, Jun I, Seo KY, et al. Artificial Intelligence for the Estimation of Visual Acuity Using Multi-Source Anterior Segment Optical Coherence Tomographic Images in Senile Cataract [J]. Front Med (Lausanne), 2022, 9: 871382.
[34]
Askarian B, Ho P, Chong JW. Detecting Cataract Using Smartphones [J]. IEEE J Transl Eng Health Med, 2021, 9: 3800110.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[4] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[5] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[6] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[11] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[12] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[13] 王洪, 王骏华, 范建楠. 人工智能技术在肩袖损伤中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 356-361.
[14] 潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要