切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (04) : 193 -198. doi: 10.3877/cma.j.issn.2095-2007.2023.04.001

述评

关注后发性白内障的发病机制及防控措施
孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华()   
  1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 北京市眼科学与视觉科学重点实验室
  • 收稿日期:2023-05-03 出版日期:2023-08-28
  • 通信作者: 万修华
  • 基金资助:
    国家自然科学基金项目(82171037)

Pay attention to the pathogenesis and prevention and control measures of posterior cataract

Xiuli Sun, Zhenyu Liu, Tingting Tang, Jingshang Zhang, Meng Li, Yingyan Mao, Xiuhua Wan()   

  1. Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab., Beijing 100730, China
  • Received:2023-05-03 Published:2023-08-28
  • Corresponding author: Xiuhua Wan
引用本文:

孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华. 关注后发性白内障的发病机制及防控措施[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 193-198.

Xiuli Sun, Zhenyu Liu, Tingting Tang, Jingshang Zhang, Meng Li, Yingyan Mao, Xiuhua Wan. Pay attention to the pathogenesis and prevention and control measures of posterior cataract[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(04): 193-198.

后发性白内障(PCO)是白内障囊外摘除术和超声乳化白内障吸除术后的主要并发症。现有研究发现,术后残留晶状体上皮细胞,上皮-间充质转化(EMT)是PCO形成的主要原因,其发病机制涉及众多信号通路、细胞因子、生长因子、蛋白酶及整合素的参与;而PCO的防控现有手段有激光治疗、药物治疗、人工晶状体(IOL)材料改性以及基因治疗等多种措施。本文中笔者就当前PCO的发病机制及防控措施进行评述。

Posterior cataract (PCO) is the main complication after extracapsular cataract extraction and phacoemulsification. It has demonstrated that residual lens epithelial cell epithelial mesenchymal transition (EMT) after surgery is the main cause of PCO formation, and its pathogenesis involves the involvement of numerous signaling pathways, cytokines, growth factors, proteases, and integrins. The existing methods for preventing and controlling PCO include laser therapy, drug therapy, modification of intraocular lens (IOL) materials, and gene therapy. The current pathogenesis and prevention and control measures of posterior cataract were reviewed in this paper.

[1]
Taiyab A, Holms J, West-Mays JA. Beta-catenin/Smad3 interaction regulates transforming growth factor-beta-induced epithelial to mesenchymal transition in the lens[J]. Int J Mol Sci, 2019, 20(9): 2078.
[2]
Zhang C, Guo Q, Tong Z, et al. Thin film nanoarchitectonics of layer-by-layer assembly with reduced graphene oxide on intraocular lens for photothermal therapy of posterior capsular opacification[J]. J Colloid Interface Sci, 2022, 619: 348-358.
[3]
Kubo E, Shibata T, Singh DP, et al. Roles of TGF beta and FGF signals in the lens: tropomyosin regulation for posterior capsule opacity[J]. Int J Mol Sci, 2018, 19(10): 3093.
[4]
Nibourg LM, Gelens E, Kuijer R, et al. Prevention of posterior capsular opacification[J]. Exp Eye Res, 2015, 136: 100-115.
[5]
Li H, Yuan X, Li J, et al. Implication of Smad2 and Smad3 in transforming growth factor-β-induced posterior capsular opacification of human lens epithelial cells[J]. Current Eye Research, 2014, 40(4): 386-397.
[6]
Xie W, Yu Q, Wang L, et al. Toll-like receptor 3 gene regulates cataract-related mechanisms via the Jagged-1/Notch signaling pathway[J]. Bioengineered, 2022, 13(6): 14357-14367.
[7]
Chen X, Ye S, Xiao W, et al. ERK1/2 pathway mediates epithelial-mesenchymal transition by cross-interacting with TGFbeta/Smad and Jagged/Notch signaling pathways in lens epithelial cells[J]. Int J Mol Med, 2014, 33(6): 1664-1670.
[8]
Nam MH, Nagaraj RH. Matrix-bound AGEs enhance TGFbeta2-mediated mesenchymal transition of lens epithelial cells via the noncanonical pathway: implications for secondary cataract formation[J]. Biochem J, 2018, 475(8): 1427-1440.
[9]
Yao J, Yang W, Liu Y, et al. Dexamethasone inhibits TGF-beta2-induced migration of human lens epithelial cells: implications for posterior capsule opacification prevention[J]. Mol Med Rep, 2012, 5(6): 1509-1513.
[10]
Chen X, Xiao W, Chen W, et al. The epigenetic modifier trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial-mesenchymal transition of lens epithelial cells[J]. Cell Death Dis, 2013, 4(10): e884.
[11]
Ning J, Ma X, Long C, et al. Anti-tumor drug THZ1 suppresses TGFbeta2-mediated EMT in lens epithelial cells via Notch and TGFbeta/Smad signaling pathway[J]. J Cancer, 2019, 10(16): 3778-3788.
[12]
Costello MJ, Brennan LA, Basu S, et al. Autophagy and mitophagy participate in ocular lens organelle degradation[J]. Exp Eye Res, 2013, 116: 141-150.
[13]
Chandler HL, Gervais KJ, Lutz EA, et al. Cyclosporine A prevents ex vivo PCO formation through induction of autophagy-mediated cell death[J]. Exp Eye Res, 2015, 134: 63-72.
[14]
Li H, Song H, Yuan X, et al. miR-30a reverses TGF-beta2-induced migration and EMT in posterior capsular opacification by targeting Smad2[J]. Mol Biol Rep, 2019, 46(4): 3899-3907.
[15]
Zhou W, Xu J, Wang C, et al. MiR-23b-3p regulates apoptosis and autophagy via suppressing SIRT1 in lens epithelial cells[J]. J Cell Biochem, 2019, 120(12): 19635-19646.
[16]
Sun Y, Xiong L, Wang X, et al. Autophagy inhibition attenuates TGF-beta2-induced epithelial-mesenchymal transition in lens epithelial cells[J]. Life Sci, 2021, 265: 118741.
[17]
Li J, Yu J, Huang W, et al. Extracellular HSP90 promotes differentiation of lens epithelial cells to fiber cells by activating LRP1-YAP-PROX1 axis[J]. FASEB J, 2023, 37(2): e22783.
[18]
刘含若,袁博伟,安莹,等. 莱菔硫烷激发的细胞自噬潮对离体人晶状体囊上细胞增生的抑制作用[J]. 中华实验眼科杂志2017, 35(3): 226-232.
[19]
Wang Y, Li W, Zang X, et al. MicroRNA-204-5p regulates epithelial-to-mesenchymal transition during human posterior capsule opacification by targeting SMAD4[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 323-332.
[20]
Dong N, Xu B, Benya SR, et al. MiRNA-26b inhibits the proliferation, migration, and epithelial-mesenchymal transition of lens epithelial cells[J]. Mol Cell Biochem, 2014, 396(1-2): 229-238.
[21]
Dong N, Tang X, Xu B. MiRNA-181a inhibits the proliferation, migration, and epithelial-mesenchymal transition of lens epithelial cells[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 993-1001.
[22]
Liu B, Sun J, Lei X, et al. MicroRNA-486-5p suppresses TGF-beta2-induced proliferation, invasion and epithelial-mesenchymal transition of lens epithelial cells by targeting Smad2[J]. J Biosci, 2017, 42(4): 575-584.
[23]
Han R, Hao P, Wang L, et al. MicroRNA-34a inhibits epithelial-mesenchymal transition of lens epithelial cells by targeting Notch1[J]. Experimental Eye Research, 2019, 185: 107684.
[24]
Economou MA, Wu J, Vasilcanu D, et al. Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor[J]. Acta Ophthalmol, 2008, 86(4): 42-49.
[25]
Li X, Sun M, Cheng A, et al. LncRNA GAS5 regulates migration and epithelial-to-mesenchymal transition in lens epithelial cells via the miR-204-3p/TGFBR1 axis[J]. Lab Invest, 2022, 102(4): 452-460.
[26]
Wang J, Zhang J, Xiong Y, et al. TGF-beta regulation of microRNA miR-497-5p and ocular lens epithelial cell mesenchymal transition[J]. Sci China Life Sci, 2020, 63(12): 1928-1937.
[27]
Xiong L, Sun Y, Huang J, et al. Long non-coding RNA H19 prevents lens fibrosis through maintaining lens epithelial cell phenotypes[J]. Cells, 2022, 11(16): 2559.
[28]
Wang H, Zheng G. Circ-GGA3 promotes the biological functions of human lens epithelial cells depending on the regulation of miR-497-5p/SMAD4 axis[J]. Biochem Biophys Res Commun, 2022, 598: 62-68.
[29]
Guo M, Su F, Chen Y, et al. Interfering Hsa_circRNA_0060640 suppresses TGF-beta2-induced proliferation, motility and EMT in human lens epithelium cells by targeting miR-214-3p and collagen type I alpha2 chain[J]. Curr Eye Res, 2022, 47(5): 735-746.
[30]
Huang P, Hu Y, Duan Y. TGF-beta2-induced circ-PRDM5 regulates migration, invasion, and EMT through the miR-92b-3p/COL1A2 pathway in human lens epithelial cells[J]. J Mol Histol, 2022, 53(2): 309-320.
[31]
Jing R, Hu C, Qi T, et al. FILIP1L-mediated cell apoptosis, epithelial-mesenchymal transition and extracellular matrix synthesis aggravate posterior capsular opacification[J]. Life Sci, 2021, 286: 120061.
[32]
Ma B, Yang L, Jing R, et al. Effects of interleukin-6 on posterior capsular opacification[J]. Exp Eye Res, 2018, 172: 94-103.
[33]
Jiang J, Shihan MH, Wang Y, et al. Lens epithelial cells initiate an inflammatory response following cataract surgery[J]. Invest Ophthalmol Vis Sci, 2018, 59(12): 4986-4997.
[34]
Awasthi N, Wang-Su ST, Wagner BJ. Downregulation of MMP-2 and -9 by proteasome inhibition: a possible mechanism to decrease LEC migration and prevent posterior capsular opacification[J]. Invest Ophthalmol Vis Sci, 2008, 49(5): 1998-2003.
[35]
Mclean SM, Mathew MR, Kelly JB, et al. Detection of integrins in human cataract lens epithelial cells and two mammalian lens epithelial cell lines[J]. Br J Ophthalmol, 2005, 89(11): 1506-1509.
[36]
Ma B, Ni N, Shao W, et al. Bit1 is involved in regulation between integrin and TGFbeta signaling in lens epithelial cells[J]. Cell Cycle, 2022, 21(21): 2283-2297.
[37]
Aose M, Matsushima H, Mukai K, et al. Influence of intraocular lens implantation on anterior capsule contraction and posterior capsule opacification[J]. J Cataract Refract Surg, 2014, 40(12): 2128-2133.
[38]
Jaitli A, Roy J, Chatila A, et al. Role of fibronectin and IOL surface modification in IOL: lens capsule interactions[J]. Exp Eye Res, 2022, 221: 109135.
[39]
Mastromonaco C, Balazsi M, Coblentz J, et al. Histopathological analysis of residual lens cells in capsular opacities after cataract surgery using objective software[J]. Indian J Ophthalmol, 2022, 70(5): 1617-1625.
[40]
Versura P, Torreggiani A, Cellini M, et al. Adhesion mechanisms of human lens epithelial cells on 4 intraocular lens materials[J]. J Cataract Refract Surg, 1999, 25(4): 527-533.
[41]
Grzybowski A, Zemaitiene R, Markeviciute A, et al. Should we abandon hydrophilic intraocular lenses?[J]. Am J Ophthalmol, 2022, 237: 139-145.
[42]
Huang Y, Xie L. Delayed postoperative opacification of foldable hydrophilic acrylic intraocular lenses[J]. J Biomed Mater Res B Appl Biomater, 2011, 96(2): 386-391.
[43]
Hoehn R, Mirshahi A, Hoffmann EM, et al. Distribution of intraocular pressure and its association with ocular features and cardiovascular risk factors: the Gutenberg Health Study[J]. Ophthalmology, 2013, 120(5): 961-968.
[44]
Wang E, Reid B, Lois N, et al. Electrical inhibition of lens epithelial cell proliferation: an additional factor in secondary cataract?[J]. FASEB J, 2005, 19(7): 842-844.
[45]
Chaudhry M, Baisakhiya S, Bhatia MS. A rare complication of Nd-YAG capsulotomy: propionibacterium acnes endopthalmitis[J]. Nepal J Ophthalmol, 2011, 3(1): 80-82.
[46]
Zhang X, Lai K, Li S, et al. Drug-eluting intraocular lens with sustained bromfenac release for conquering posterior capsular opacification[J]. Bioact Mater, 2022, 9: 343-357.
[47]
Li Q, Liu S, Yang G, et al. Naringenin inhibits autophagy and epithelial-mesenchymal transition of human lens epithelial cells by regulating the Smad2/3 pathway[J]. Drug Dev Res, 2022, 83(2): 389-396.
[48]
Wang L, Tian Y, Shang Z, et al. Metformin attenuates the epithelial-mesenchymal transition of lens epithelial cells through the AMPK/TGF-beta/Smad2/3 signalling pathway[J]. Exp Eye Res, 2021, 212: 108763.
[49]
Sugiyama Y, Nakazawa Y, Sakagami T, et al. Capsaicin attenuates TGFbeta2-induced epithelial-mesenchymal-transition in lens epithelial cells in vivo and in vitro[J]. Exp Eye Res, 2021, 213: 108840.
[50]
Huai B, Huang C, Hu L. Curcumin suppresses TGF-beta2-induced proliferation, migration, and invasion in lens epithelial cells by targeting KCNQ1OT1/miR-377-3p/COL1A2 axis in posterior capsule opacification[J]. Curr Eye Res, 2022, 47(5): 715-726.
[51]
Wang Z, Gao R, Shi Q, et al. Inhibitory effects of NO-fluvastatin on proliferation of human lens epithelial cells in vitro by modulating cell cycle regulatory proteins[J]. J Huazhong Univ Sci Technolog Med Sci, 2008, 28(5): 588-591.
[52]
Zhang RP, Xie ZG. Research progress of drug prophylaxis for lens capsule opacification after cataract surgery[J]. J Ophthalmol, 2020: 2181685.
[53]
Wang R, Xia J, Tang J, et al. Surface modification of intraocular lens with hydrophilic poly (sulfobetaine methacrylate) brush for posterior capsular opacification prevention[J]. J Ocul Pharmacol Ther, 2021, 37(3): 172-180.
[54]
Seo Y, Kim S, Lee HS, et al. Femtosecond laser induced nano-textured micropatterning to regulate cell functions on implanted biomaterials[J]. Acta Biomater, 2020, 116: 138-148.
[55]
Hazra S, Palui H, Vemuganti GK. Comparison of design of intraocular lens versus the material for PCO prevention[J]. Int J Ophthalmol, 2012, 5(1): 59-63.
[56]
Teng H, Zhang H, Tian F, et al. The study of cyclosporin A modified intraocular lens preventing posterior capsular opacification in rabbit eyes[J]. Zhonghua Yan Ke Za Zhi, 2016, 52(2): 110-116.
[57]
Lu D, Han Y, Liu D, et al. Centrifugally concentric ring-patterned drug-loaded polymeric coating as an intraocular lens surface modification for efficient prevention of posterior capsular opacification[J]. Acta Biomater, 2022, 138: 327-341.
[58]
Kassumeh SA, Wertheimer CM, Von Studnitz A, et al. Poly (lactic-co-glycolic) acid as a slow-release drug-carrying matrix for methotrexate coated onto intraocular lenses to conquer posterior capsule opacification[J]. Curr Eye Res, 2018, 43(6): 702-708.
[59]
Sun CB, Teng WQ, Cui JT, et al. The effect of anti-TGF-beta2 antibody functionalized intraocular lens on lens epithelial cell migration and epithelial-mesenchymal transition[J]. Colloids Surf B Biointerfaces, 2014, 113: 33-42.
[60]
Wormstone IM, Tamiya S, Eldred JA, et al. Characterisation of TGF-beta2 signalling and function in a human lens cell line[J]. Exp Eye Res, 2004, 78(3): 705-714.
[61]
Wang D, Guo D, Bi H, et al. Zinc oxide nanoparticles inhibit Ca2+-ATPase expression in human lens epithelial cells under UVB irradiation[J]. Toxicol In Vitro, 2013, 27(8): 2117-2126.
[62]
Liu D, Wu Q, Chen W, et al. Nanoporous gold ring-integrated photothermal intraocular lens for active prevention of posterior capsular opacification[J]. Small, 2022, 18(34): e2201098.
[63]
Mao YY, Li M, Wang JD, et al. NIR-triggered drug delivery system for chemo-photothermal therapy of posterior capsule opacification[J]. J Control Release, 2021, 339: 391-402.
[64]
Hong Y, Fang Q, Bai T, et al. Cascade reaction triggering and photothermal AuNPs@MIL MOFs doped intraocular lens for enhanced posterior capsular opacification prevention[J]. J Nanobiotechnology, 2023, 21(1): 134.
[65]
Zhang D, Zhu H, Yu X, et al. Blue light attenuates TGF-beta2-induced epithelial-mesenchymal transition in human lens epithelial cells via autophagy impairment[J]. BMC Ophthalmol, 2022, 22(1): 456.
[1] 唐蜜, 蔡江晖, 罗尔丹, 郭文玫, 熊丽玲, 林永红, 邢莎莎, 杨霄. 多肽疫苗治疗乳腺癌的临床研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 309-313.
[2] 段燕, 郭欣, 吕慧芳, 王国利, 黄明光, 董英俊. 乳腺癌患者辅助化疗后感染肺孢子菌一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 318-321.
[3] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[4] 江泽莹, 王安婷, 王姣丽, 陈慈, 周秋玲, 黄燕娟, 周芳, 薛琰, 周剑烽, 谭文勇, 杜美芳. 多种植物油组分预防肿瘤放化疗相关毒性反应的效果分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 523-527.
[5] 刘虹宏, 杨永红, 张冬花, 林运. 老年冠脉分叉病变主支支架植入后在损伤边支使用药物涂层球囊进行修复的临床研究[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 387-393.
[6] 李维, 莫俊俏. 儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 315-323.
[7] 叶长缨, 谢静, 丁桂聪. 乳牙龋病的过渡性治疗研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 365-370.
[8] 张华, 孙宇, 乡世健, 李樱媚, 王小群. 循环肿瘤细胞预测晚期胃肠癌患者化疗药物敏感性的研究[J]. 中华普通外科学文献(电子版), 2023, 17(06): 422-425.
[9] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会, 上海医药行业协会. 中国肝、肾移植受者霉酚酸类药物应用专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(05): 257-272.
[10] 中国康复医学会器官移植康复专业委员会. 成人实体器官移植后糖尿病管理专家共识[J]. 中华移植杂志(电子版), 2023, 17(04): 205-220.
[11] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[12] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[13] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[14] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
[15] 王昊, 明倩文, 王斌, 卢太坤, 张海宁. 利奈唑胺致黑毛舌的临床诊断学特征[J]. 中华诊断学电子杂志, 2023, 11(04): 254-260.
阅读次数
全文


摘要