切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2024, Vol. 14 ›› Issue (03) : 134 -139. doi: 10.3877/cma.j.issn.2095-2007.2024.03.002

论著

MS-39眼前节分析仪与Pentacam三维眼前节分析仪在屈光手术术前角膜生物测量的临床研究
柳静1, 魏姗珊1, 郑燕1, 张丽1, 翟长斌1,()   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科学与视觉科学重点实验室
  • 收稿日期:2024-05-11 出版日期:2024-06-28
  • 通信作者: 翟长斌
  • 基金资助:
    国家重点研发计划项目(2022YF2404505)

Comparision of corneal biometric measurements before refractive surgery between the MS-39 anterior segment analyzer and the Pentacam 3D anterior segment analyzer

Jing Liu1, Shanshan Wei1, Yan Zheng1, Li Zhang1, Changbin Zhai1,()   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
  • Received:2024-05-11 Published:2024-06-28
  • Corresponding author: Changbin Zhai
引用本文:

柳静, 魏姗珊, 郑燕, 张丽, 翟长斌. MS-39眼前节分析仪与Pentacam三维眼前节分析仪在屈光手术术前角膜生物测量的临床研究[J]. 中华眼科医学杂志(电子版), 2024, 14(03): 134-139.

Jing Liu, Shanshan Wei, Yan Zheng, Li Zhang, Changbin Zhai. Comparision of corneal biometric measurements before refractive surgery between the MS-39 anterior segment analyzer and the Pentacam 3D anterior segment analyzer[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(03): 134-139.

目的

探讨MS-39眼前节分析仪与Pentacam三维眼前节分析仪在屈光手术术前角膜生物测量结果的异同。

方法

收集2020年5月至2020年7月就诊于首都医科大学附属北京同仁医院屈光手术中心拟行屈光手术的患者78例(156只眼)。其中,男性22例(44只眼),女性56例(112只眼)。年龄22~48岁,平均年龄为(29.5±6.1)岁。分别应用MS-39眼前节分析仪与Pentacam三维眼前节分析仪检测,测量患者双眼平坦轴角膜曲率(K1)、陡峭轴角膜曲率(K2)、角膜体积、前房深度、Kappa角、角膜Q值、角膜球差及角膜高阶像差。经检验,患者年龄、眼压、球镜度及柱镜度符合正态分布,以±s表示。K1、K2、角膜体积、前房深度、Kappa角、角膜Q值、角膜球差及角膜高阶像差不符合正态分布,采用中位数和四分间距描述。两种设备检测指标的差异性采用Wilcoxon符号秩检验,其相关性采用Spearman分析,其一致性采用Bland-Altman检验分析。

结果

全部患者78例(156只眼),应用MS-39眼前节分析仪和Pentacam三维眼前节分析仪测量角膜曲率K1值分别为43.03(40.49,46.44)D和42.08(40.10,42.05)D,其差异具有统计学意义(Z=-8.56,P<0.05)。MS-39眼前节分析仪和Pentacam三维眼前节分析仪测量角膜曲率K2值分别为44.37(41.37,48.89)D和44.30(41.20,48.70)D,其差异具有统计学意义(Z=-4.50,P<0.05)。MS-39眼前节分析仪和Pentacam三维眼前节分析仪测量角膜体积分别为56.20(50.6,63.8)mm3和59.70(54.2,67.6)mm3,其差异具有统计学意义(Z=-10.87,P<0.05)。MS-39眼前节分析仪和Pentacam三维眼前节分析仪测量前房深度分别为3.77(3.22,4.50)mm和3.71(3.15,4.45)mm,其差异具有统计学意义(Z=-7.56,P<0.05)。MS-39眼前节分析仪和Pentacam三维眼前节分析仪测量Kappa角分别为-0.04(-0.42,0.41)°和0.18(0.00,0.42)°,其差异具有统计学意义(Z=-10.28,P<0.05)。MS-39眼前节分析仪和Pentacam三维眼前节分析仪测量角膜Q值分别为-0.16(-0.46,0.53)和-0.29(-1.03,-0.01),其差异具有统计学意义(Z=-9.75,P<0.05)。MS-39眼前节分析仪和Pentacam三维眼前节分析仪测量角膜球差分别为0.23(0.02,0.56)D和0.15(-0.13,0.34)D,其差异具有统计学意义(Z=-9.50,P<0.05)。MS-39眼前节分析仪和Pentacam三维眼前节分析仪测量角膜高阶像差分别为0.43(-0.37,1.16)D和0.37(0.23,1.90)D,其差异具有统计学意义(Z=-6.76,P<0.05)。MS-39眼前节分析仪与Pentacam三维眼前节分析仪检测的角膜曲率K1、角膜曲率K2,角膜体积及前房深度具有极强相关性(r=0.97,0.94,0.95,0.96;P<0.05),角膜球差有强相关性(r=0.67,P<0.05),角膜Q值有中等相关性(r=0.54,P<0.05),而Kappa角及角膜高阶像差无相关性(r=0.24,0.30;P>0.05)。Pentacam三维眼前节分析仪与MS-39眼前节分析仪检测角膜曲率K1、角膜曲率K2、角膜体积、前房深度、Kappa角、角膜Q值、角膜球差及角膜高阶像差差值的平均值(95%一致性界限区间)分别为0.27(-0.37 ~ 0.91)D、0.19(-0.80 ~ 1.19)D、0.05 (-0.10 ~ 0.20)mm、-0.21(-0.53 ~ 0.10)°、0.13(-0.15 ~ 0.41)、-3.30(-5.0 ~ -1.61)mm3、0.08(-0.08 ~ 0.24)D、0.08(-0.32 ~ 0.47)D,分别占6.4%(10/156)、1.9%(3/156)、6.4%(10/156)、4.5%(7/156)、3.2%(5/156)、5.8%(9/156)、3.8%(6/156)、3.2%(5/156)个点位于95%一致性界限区间之外。

结论

MS-39眼前节分析仪与Pentacam三维眼前节分析仪检测的全部8项指标均存在差异性,但在整体上具有较高的相关性及一致性。

Objective

To investigate the differences and similarities between MS-39 anterior segment analyzer and Pentacam 3D anterior segment analyzer in corneal biometry before refractive surgery.

Methods

A total of 78 patients (156 eyes) scheduled for refractive surgery in the Refractive Surgery Center of Beijing Tongren Hospital Affiliated to Capital Medical University from May 2020 to July 2020 were collected. There were 22 males (44 eyes) and 56 females (112 eyes) with the average age of (29.5±6.1) years (ranging from 22 to 48 years). MS-39 anterior segment analyzer and Pentacam 3D anterior segment analyzer were used to measure the corneal curvature (K1), corneal curvature (K2), corneal volume, anterior chamber depth (ACD), Kappa angle, corneal Q value, corneal spherical aberration and corneal high-order aberration. After examination, the patient′s age, intraocular pressure, sphericity and cylindricity conformed to the normal distribution, and were expressed as ±s. K1, K2, corneal volume, ACD, Kappa angle, corneal Q value, corneal spherical aberration and corneal higher-order aberration did not conform to normal distribution, and were described by median and interquartile distance. Wilcoxon signed rank test was used to analyze the difference of the two equipment detection indices, Spearman test was used to analyze the correlation, and Bland-Altman test was used to analyze the consistency.

Results

The corneal curvature K1 values of 78 patients (156 eyes) treated with MS-39 anterior segment analyzer and Pentacam 3D anterior segment analyzer were 43.03 (40.49, 46.44) D and 42.08 (40.10, 42.05) D, respectively, with a statistically significant difference between them (Z=-8.56, P<0.05). The corneal curvature K2 measured by MS-39 anterior segment analyzer and Pentacam 3D anterior segment analyzer were 44.37 (41.37, 48.89) D and 44.30 (41.20, 48.70) D, respectively, and the difference was statistically significant (Z=-4.50, P<0.05). The corneal volume measured by MS-39 anterior segment analyzer and Pentacam 3D anterior segment analyzer were 56.20 (50.6, 63.8) mm3 and 59.70 (54.2, 67.6) mm3, respectively, and the difference was statistically significant (Z=-10.87, P<0.05). The ACD measured by MS-39 anterior segment analyzer and Pentacam 3D anterior segment analyzer were 3.77 (3.22, 4.50) mm and 3.71 (3.15, 4.45) mm, respectively, and the difference was statistically significant (Z=-7.56, P<0.05). The Kappa angle measured by MS-39 anterior segment analyzer and Pentacam 3D anterior segment analyzer were -0.04 (-0.42, 0.41) ° and 0.18 (0.00, 0.42) ° respectively, and the difference was statistically significant (Z=-10.28, P<0.05). The corneal Q values measured by MS-39 anterior segment analyzer and Pentacam 3D anterior segment analyzer were -0.16 (-0.46, 0.53) and -0.29 (-1.03, -0.01), respectively, and the difference was statistically significant (Z=-9.75, P<0.05). The corneal spherical aberration measured by MS-39 anterior segment analyzer and Pentacam 3D anterior segment analyzer were 0.23 (0.02, 0.56) D and 0.15 (-0.13, 0.34) D, respectively, and the difference was statistically significant (Z=-9.50, P<0.05). The corneal high-order aberrations measured by MS-39 anterior segment analyzer and Pentacam 3D anterior segment analyzer were 0.43 (-0.37, 1.16) D and 0.37 (0.23, 1.90) D, respectively, and the difference was statistically significant (Z=-6.76, P<0.05). The K1, K2, corneal volume, ACD measured by MS-39 anterior segment analyzer and Pentacam 3D anterior segment analyzer were great highly correlated (r=0.97, 0.94, 0.95, 0.96; P<0.05). The corneal spherical aberration and corneal Q value weres highly correlated between two devices (r=0.67, 0.54; P<0.05). There was no correlation between Kappa angle and corneal high-order aberration (r=0.24, 0.30; P>0.05). The average values of K1, K2, ACD, Kappa angle, corneal Q value, corneal spherical aberration and corneal high-order aberration measured by Pentacam 3D anterior segment analyzer and MS-39 anterior segment analyzer (95% consistency limit interval) were 0.27 (-0.37~0.91) D, 0.19 (-0.80~1.19) D, 0.05 (-0.10~0.20) mm, -0.21 (-0.53~0.10)°, 0.13(-0.15 ~ 0.41), -3.30(-5.0 ~ -1.61)mm3, 0.08(-0.08 ~ 0.24)D, 0.08(-0.32 ~ 0.47)D, respectively. There were 6.4%(10/156), 1.9%(3/156), 6.4%(10/156), 4.5%(7/156), 3.2%(5/156), 5.8%(9/156), 3.8%(6/156), 3.2%(5/156) located within the 95% consistency boundary interval, respectively.

Conclusions

There were differences in 8 indices detected by MS-39 anterior segment analyzer and Pentacam 3D anterior segment analyzer, but they had high correlation and consistency on the whole.

图1 MS-39眼前节分析仪与Pentacam三维眼前节分析仪测量指标相关性的比较 图A示角膜曲率K1的比较;图B示角膜曲率K2的比较;图C示角膜体积的比较;图D示前房深度的比较;图E示Kappa角的比较;图F示角膜Q值的比较;图G示角膜球差的比较;图H示角膜高阶像差差值的比较
表1 MS-39眼前节分析仪与Pentacam三维眼前节分析仪测量前节参数的比较[M(Q1,Q3)]
表2 Pentacam三维眼前节分析仪与MS-39眼前节分析仪检测结果的相关性分析
[1]
Savini G, Schiano-Lomoriello D, Hoffer KJ. Repeatability of automatic measurements by a new anterior segment optical coherence tomographer combined with Placido topography and agreement with 2 Scheimpflug cameras[J]. J Cataract Refract Surg, 2018, 44(4): 471-480.
[2]
Seiler TG, Mueller M, Mendes BT. Repeatability and comparison of corneal tomography in mild to severe keratoconus between the anterior segment OCT MS-39 and Pentacam HR[J], J Refract Surg, 2022, 38(4): 250-255.
[3]
Schiano-Lomoriello D, Hoffer KJ, Abicca I, et al. Repeatability of automated measurements by a new anterior segment optical coherence tomographer and biometer and agreement with standard devices[J]. Sci Rep, 2021, 11(1): 983.
[4]
Lam AK. A hand-held keratometer[J]. Ophthalmic Physiol Opt, 1995, 15(3): 227-230.
[5]
Lee J, Choi HJ. Accuracy and reliability of measurements obtained with a noncontact tono-pachymeter for clinical use in mass screening[J]. Sci Rep, 2021, 11(1): 8900.
[6]
Cardona H, DeVoe AG. New pachymeter to measure corneal thickness[J]. Am J Ophthalmol, 1971, 72(1): 127.
[7]
Ambrósio R, Valbon BF, Faria-Correia F, et al. Scheimpflug imaging for laser refractive surgery[J]. Curr Opin Ophthalmol, 2013, 24(4): 310-320.
[8]
De Andrade Ramos L, Seullner Brandäo CV, Guillermo Arce C, et al. Dual-Scheimpflug-Placido-disc corneal analysis in cats[J]. Vet Ophthalmol, 2022, 25(5): 360-366.
[9]
Ning R, Gao R, Piñero DP, et al. Repeatability and reproducibility of corneal higher-order aberrations measurements after small incision lenticule extraction using the Scheimpflug-Placido topographer[J]. Eye Vis (Lond), 2022, 9(1): 1.
[10]
Ning R, Huang X, Jin Y, et al. Corneal higher-order aberrations measurements[J]. Ophthalmol Ther, 2023, 12(3): 1595-1610.
[11]
Ning R, Niu L, Xing W, et al. Precision of corneal aberrations measured by a new SD-OCT/Placido topographer and its agreement with a scheimpflug/placido topographer[J]. J Refract Surg, 2023, 39(6): 405-412.
[12]
刘志慧,李雪,郑志源,等. SMILE术后角膜体积的变化及其与角膜生物力学特性的相关性[J]. 眼科学报202237(8):609-619.
[13]
Schuh A, Kolb CM, Mayer WJ, et al. Comparison of changes in corneal volume and corneal thickness after myopia correction between LASIK and SMILE[J]. PLoS One, 2021, 16(5): e0250700.
[14]
Viswanathan D, Kumar NL, Males JJ, et al. Relationship of structural characteristics to biomechanical profile in normal, keratoconic, and crosslinked eyes[J]. Cornea, 2015, 34(7): 791-796.
[15]
Çevik SG, Kıvanç SA, Akova-Budak B, et al. Relationship among corneal biomechanics, anterior segment parameters, and geometric corneal parameters[J]. J Ophthalmol, 2016: 8418613.
[16]
Ahmadi Hosseini SM, Mohidin N, Abolbashari F, et al. Corneal thickness and volume in subclinical and clinical keratoconus[J]. Int Ophthalmol, 2013, 33(2): 139-145.
[17]
Ambrósio R, Alonso RS, Luz A, et al. Corneal-thickness spatial profile and corneal-volume distribution[J]. J Cataract Refract Surg, 2006, 32(11): 1851-1859.
[18]
张晓山,王萍,李帅飞,等. Pentacam三维眼前节分析仪与iTrace视觉分析仪测量近视眼Kappa角的一致性分析[J]. 眼科学报202338(6):449-453.
[19]
Qin M, Yuan Y, Wang Y, et al. Comparison of preoperative angle kappa measurements in the eyes of cataract patients obtained from Pentacam Scheimpflug system, optical low-coherence reflectometry, and ray-tracing aberrometry[J]. BMC Ophthalmol, 2022, 22(1): 153.
[20]
Wang Q, Ding X, Savini G, et al. Anterior chamber depth measurements using Scheimpflug imaging and optical coherence tomography: Repeatability, reproducibility, and agreement[J]. J Cataract Refr Surg, 2015, 41(1): 178-185.
[1] 刘佳, 贺瑞, 李晓娜, 高妍. 角膜屈光手术术前筛查早期圆锥角膜的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 375-379.
[2] 马山, 刘秀花, 姜雅琴. IOLMaster700光学生物测量仪与Pentacam三维眼前节分析仪检测白内障患者眼部参数的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(05): 280-285.
阅读次数
全文


摘要