切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (04) : 193 -197. doi: 10.3877/cma.j.issn.2095-2007.2022.04.001

述评

关注屈光性白内障手术时代的精准眼球生物测量
王子杨1, 杨文利1,()   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 眼科学与视觉科学北京市重点实验室
  • 收稿日期:2022-06-14 出版日期:2022-08-28
  • 通信作者: 杨文利
  • 基金资助:
    国家重点研发计划项目(2018YFC0116000)

Pay attention to the precise ocular biometry in the era of refractive cataract surgery

Ziyang Wang1, Wenli Yang1,()   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing 100730, China
  • Received:2022-06-14 Published:2022-08-28
  • Corresponding author: Wenli Yang
引用本文:

王子杨, 杨文利. 关注屈光性白内障手术时代的精准眼球生物测量[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 193-197.

Ziyang Wang, Wenli Yang. Pay attention to the precise ocular biometry in the era of refractive cataract surgery[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(04): 193-197.

近年来,白内障的手术治疗从复明性手术进入屈光性手术时代,对术前精准而全面的眼球生物测量提出了更高的要求。精准眼球生物测量,既包括眼轴长度、角膜曲率、前房深度、晶状体厚度及角膜直径等眼球结构参数的测量,还纳入了Kappa角、Alpha角及波前像差等视光学参数。了解每个参数的测量方法和临床应用,合理的选择检查设备,正确的判读检查结果,是每位屈光性白内障手术医师应掌握的内容。

In recent years, the cataract surgery for restoring vision has been developped into the refractive cataract surgery (RCS). The era of RCS has been coming, which causing to require more accurate and comprehensive preoperative ocular biometry. Accurate ocular biometry does not only include the measurement of the structural parameters of the eyeball, e. g. axial length, corneal curvature, anterior chamber depth, lens thickness, and corneal diameter, but also some vision optics parameters, e. g. Kappa angle, Alpha angle, wavefront aberration, etc. It is obligatory upon refractive cataract surgeons to understand the measurement method and clinical application of each parameter, select the examination equipment reasonably, and interprete the results correctly.

[1]
杨文利. 人工晶状体屈光度计算专家共识与解读[M]. 1版. 北京:人民卫生出版社,2019:9-10.
[2]
Sheard R. Optimising biometry for best outcomes in cataract surgery[J]. Eye (Lond), 2014, 28(2): 118-125.
[3]
See CW, Iftikhar M, Woreta FA. Preoperative evaluation for cataract surgery[J]. Curr Opin Ophthalmol, 2019, 30(1): 3-8.
[4]
Moshirfar M, Buckner B, Ronquillo YC, et al. Biometry in cataract surgery: a review of the current literature[J]. Curr Opin Ophthalmol, 2019, 30(1): 9-12.
[5]
黄锦海,叶向彧. 眼球生物测量与IOL屈光力计算[M]. 1版. 北京:人民卫生出版社,2019:7-8.
[6]
Olsen T. Calculation of intraocular lens power: a review[J]. Acta Ophthalmol Scand, 2007, 85(5): 472-485.
[7]
Antwi-Adjei EK, Owusu E, Kobia-Acquah E, et al. Evaluation of postoperative refractive error correction after cataract surgery[J]. PLoS One, 2021, 16(6): e0252787.
[8]
Kiss B, Findl O, Menapace R, et al. Refractive outcome of cataract surgery using partial coherence interferometry and ultrasound biometry: clinical feasibility study of a commercial prototype II[J]. J Cataract Refract Surg, 2002, 28(2): 230-234.
[9]
Dietlein TS, Roessler G, Luke C, et al. Signal quality of biometry in silicone oil-filled eyes using partial coherence laser interferometry[J]. J Cataract Refract Surg, 2005, 31(5): 1006-1010.
[10]
Hoffmann PC, Hütz WW, Eckhardt HB, et al. Intraocular lens calculation and ultrasound biometry: immersion and contact procedures[J]. Klin Monatsbl Augenheilkd, 1998, 213(3): 161-165.
[11]
Findl O, Kriechbaum K, Sacu S, et al. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery[J]. J Cataract Refract Surg, 2003, 29(10): 1950-1955.
[12]
Ianchulev T, Hoffer KJ, Yoo SH, et al. Intraoperative refractive biometry for predicting intraocular lens power calculation after prior myopic refractive surgery[J]. Ophthalmology, 2014, 121(1): 56-60.
[13]
Landers J, Goggin M. Comparison of refractive outcomes using immersion ultrasound biometry and IOLMaster biometry[J]. Clin Experiment Ophthalmol, 2009, 37(6): 566-569.
[14]
Rajan MS, Keilhorn I, Bell JA. Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculations[J]. Eye (Lond), 2002, 16(5): 552-556.
[15]
Olsen T, Thorwest M. Calibration of axial length measurements with the Zeiss IOLMaster[J]. J Cataract Refract Surg, 2005, 31(7): 1345-1350.
[16]
Nemeth J, Fekete O, Pesztenlehrer N. Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation[J]. J Cataract Refract Surg, 2003, 29(1): 85-88.
[17]
Shajari M, Cremonese C, Petermann K, et al. Comparison of Axial Length, Corneal Curvature, and Anterior Chamber Depth Measurements of 2 Recently Introduced Devices to a Known Biometer[J]. Am J Ophthalmol, 2017, 178: 58-64.
[18]
Kunert KS, Peter M, Blum M, et al. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry[J]. J Cataract Refract Surg, 2016, 42(1): 76-83.
[19]
Mylonas G, Sacu S, Buehl W, et al. Performance of three biometry devices in patients with different grades of age-related cataract[J]. Acta Ophthalmol, 2011, 89(3): e237-e241.
[20]
McAlinden C, Wang Q, Gao R, et al. Axial Length Measurement Failure Rates With Biometers Using Swept-Source Optical Coherence Tomography Compared to Partial-Coherence Interferometry and Optical Low-Coherence Interferometry[J]. Am J Ophthalmol, 2017, 173: 64-69.
[21]
Kane JX, Chang DF. Intraocular Lens Power Formulas, Biometry, and Intraoperative Aberrometry: A Review[J]. Ophthalmology, 2021, 128(11): e94-e114.
[22]
Gupta PC, Caty JT. Astigmatism evaluation prior to cataract surgery[J]. Curr Opin Ophthalmol, 2018, 29(1): 9-13.
[23]
Kamiya K, Fujimura F, Iijima K, et al. Regional comparison of preoperative biometry for cataract surgery between two domestic institutions[J]. Int Ophthalmol, 2020, 40(11): 2923-2930.
[24]
He X, Huang AS, Jeng BH. Optimizing the ocular surface prior to cataract surgery[J]. Curr Opin Ophthalmol, 2022, 33(1): 9-14.
[25]
Wang L, Koch DD. Intraocular Lens Power Calculations in Eyes with Previous Corneal Refractive Surgery: Review and Expert Opinion[J]. Ophthalmology, 2021, 128(11): e121-e131.
[26]
Wang L, Mahmoud AM, Anderson BL, et al. Total corneal power estimation: ray tracing method versus gaussian optics formula[J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1716-1722.
[27]
Saad E, Shammas MC, Shammas HJ. Scheimpflug corneal power measurements for intraocular lens power calculation in cataract surgery[J]. Am J Ophthalmol, 2013, 156(3): 460-467.
[28]
Hoshikawa R, Kamiya K, Fujimura F, et al. Comparison of Conventional Keratometry and Total Keratometry in Normal Eyes[J]. Biomed Res Int, 2020, 13: 8075924.
[29]
Symes RJ, Ursell PG. Automated keratometry in routine cataract surgery: comparison of Scheimpflug and conventional values[J]. J Cataract Refract Surg, 2011, 37(2): 295-301.
[30]
Falavarjani KG, Hashemi M, Joshaghani M, et al. Determining corneal power using Pentacam after myopic photorefractive keratectomy[J]. Clin Exp Ophthalmol, 2010, 38(4): 341-345.
[31]
Jin H, Auffarth GU, Guo H, et al. Corneal power estimation for intraocular lens power calculation after corneal laser refractive surgery in Chinese eyes[J]. J Cataract Refract Surg, 2012, 38(10): 1749-1757.
[32]
Haigis W. Corneal power after refractive surgery for myopia: contact lens method[J]. J Cataract Refract Surg, 2003, 29(7): 1397-1411.
[33]
Shammas HJ, Shammas MC. No-history method of intraocular lens power calculation for cataract surgery after myopic laser in situ keratomileusis[J]. J Cataract Refract Surg, 2007, 33(1): 31-36.
[34]
Mandell RB. Corneal power correction factor for photorefractive keratectomy[J]. J Refract Corneal Surg, 1994, 10(2): 125-128.
[35]
Lawless M, Jiang JY, Hodge C, et al. Total keratometry in intraocular lens power calculations in eyes with previous laser refractive surgery[J]. Clin Exp Ophthalmol, 2020, 48(6): 749-756.
[36]
Seo KY, Im CY, Yang H, et al. New equivalent keratometry reading calculation with a rotating Scheimpflug camera for intraocular lens power calculation after myopic corneal surgery[J]. J Cataract Refract Surg, 2014, 40(11): 1834-1842.
[37]
Wang L, Spektor T, de Souza RG, et al. Evaluation of total keratometry and its accuracy for intraocular lens power calculation in eyes after corneal refractive surgery[J]. J Cataract Refract Surg, 2019, 45(10): 1416-1421.
[38]
Meng J, Yu J, He W, et al. The Influence of Analysis Mode Selection on Prediction Accuracy of Corneal Astigmatism Using Pentacam[J]. Front Med (Lausanne), 2021, 8: 713502.
[39]
Savini G, Næser K, Schiano-Lomoriello D, et al. Optimized keratometry and total corneal astigmatism for toric intraocular lens calculation[J]. J Cataract Refract Surg, 2017, 43(9): 1140-1148.
[40]
沈琳,王霄娜,李栋军,等. 扫频源前节相干光层析成像术与超声生物显微镜测量老年性白内障患者眼前节参数的一致性分析[J]. 中华眼科杂志201854(9):678-682.
[41]
王子杨,杨文利,李栋军,等. 新型生物测量仪Pentacam AXL、IOLMaster 700与IOLMaster 500对白内障眼部生物学参数测量的比较[J]. 中华眼科杂志201955(7):515-521.
[42]
Nixon DR. Preoperative cataract grading by Scheimpflug imaging and effect on operative fluidics and phacoemulsification energy[J]. J Cataract Refract Surg, 2010, 36(2): 242-246.
[43]
Wang W, Zhang J, Gu X, et al. Objective quantification of lens nuclear opacities using swept-source anterior segment optical coherence tomography[J]. Br J Ophthalmol, 2022, 106(6): 790-794.
[44]
Chen D, Li Z, Huang J, et al. Lens nuclear opacity quantitation with long-range swept-source optical coherence tomography: correlation to LOCS III and a Scheimpflug imaging-based grading system[J]. Br J Ophthalmol, 2019, 103(8): 1048-1053.
[45]
Sayed KM, Alsamman AH. Interchangeability between Pentacam and IOLMaster in phakic intraocular lens calculation[J]. Eur J Ophthalmol, 2015, 25(3): 202-207.
[46]
Domínguez-Vicent A, Pérez-Vives C, Ferrer-Blasco T, et al. Interchangeability among five devices that measure anterior eye distances[J]. Clin Exp Optom, 2015, 98(3): 254-262.
[47]
Chen X, Han T, Zhao W, et al. Effect of the Difference Between the White-to-White and Sulcus-to-Sulcus on Vault and the Related Factors After ICL Implantation[J]. Ophthalmol Ther, 2021, 10(4): 947-955.
[48]
Igarashi A, Shimizu K, Kato S, et al. Predictability of the vault after posterior chamber phakic intraocular lens implantation using anterior segment optical coherence tomography[J]. J Cataract Refract Surg, 2019, 45(8): 1099-1104.
[49]
Kato Y, Kojima T, Tamaoki A, et al. Refractive prediction error in cataract surgery using an optical biometer equipped with anterior segment OCT[J]. J Cataract Refract Surg, 2022, 48(4): 429-434.
[50]
Meng J, Du Y, Wei L, et al. Distribution of angle α and angle κ in a population with cataract in Shanghai[J]. J Cataract Refract Surg, 2021, 47(5): 579-584.
[51]
中华医学会眼科学分会白内障及人工晶状体学组. 中国多焦点人工晶状体临床应用专家共识(2019年)[J]. 中华眼科杂志201955(7):491-494.
[52]
Chen X, Gu X, Wang W, et al. Distributions of crystalline lens tilt and decentration and associated factors in age-related cataract[J]. J Cataract Refract Surg, 2021, 47(10): 1296-1301.
[53]
Hirnschall N, Buehren T, Bajramovic F, et al. Prediction of postoperative intraocular lens tilt using swept-source optical coherence tomography[J]. J Cataract Refract Surg, 2017, 43(6): 732-736.
[54]
Wang L, Guimaraes de Souza R, Weikert MP, et al. Evaluation of crystalline lens and intraocular lens tilt using a swept-source optical coherence tomography biometer[J]. J Cataract Refract Surg, 2019, 45(1): 35-40.
[55]
俞阿勇. 角膜光学特性与人工晶状体优选[M]. 1版. 北京:人民卫生出版社,2017:39-41.
[1] 陈灏楠, 肖伟. 透明角膜切口对白内障术后角膜散光的影响及其精准测量的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 172-176.
[2] 宋红欣, 孙璐, 王庆强. 近视性屈光参差少年儿童眼部屈光生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 88-93.
[3] 付玥川, 陶晨. 角膜塑形镜对儿童青少年低度近视眼进展控制长期效果及其影响因素的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 287-292.
[4] 许馨月, 陈涛, 苏玉婷, 张作明. 青少年近视眼预防与控制技术研究的新进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 173-177.
[5] 刘兆川, 宋旭东. 重视景深延长型人工晶状体在屈光性白内障手术中的应用[J]. 中华眼科医学杂志(电子版), 2021, 11(04): 193-197.
[6] 张青蔚, 翟长斌, 张晶, 郑燕, 王玥, 柳静, 王宁利, 周跃华. 两种非接触眼压计临床应用效果及其关联因素的临床研究[J]. 中华眼科医学杂志(电子版), 2019, 09(03): 140-145.
[7] 李梦媛, 汤云霞, 张静琳, 侯金佟, 陈倩茵, 马红婕, 吴德正. 成年超高度近视眼患者黄斑区巩膜厚度及其相关影响因素[J]. 中华眼科医学杂志(电子版), 2019, 09(02): 77-82.
[8] 霍敏灼, 梁先军, 何锦贤, 林英杰, 曾胜, 李学民. 不同年龄近视人群角膜水平直径及眼轴长度的比较[J]. 中华眼科医学杂志(电子版), 2018, 08(01): 23-29.
[9] 高楠楠, 云丽霞, 辛柳青, 胡丽兴. 鄂尔多斯市蒙古族与汉族青少年眼轴长度的对比研究[J]. 中华眼科医学杂志(电子版), 2017, 07(01): 32-37.
阅读次数
全文


摘要