[1] |
杨文利. 人工晶状体屈光度计算专家共识与解读[M]. 1版. 北京:人民卫生出版社,2019:9-10.
|
[2] |
Sheard R. Optimising biometry for best outcomes in cataract surgery[J]. Eye (Lond), 2014, 28(2): 118-125.
|
[3] |
See CW, Iftikhar M, Woreta FA. Preoperative evaluation for cataract surgery[J]. Curr Opin Ophthalmol, 2019, 30(1): 3-8.
|
[4] |
Moshirfar M, Buckner B, Ronquillo YC, et al. Biometry in cataract surgery: a review of the current literature[J]. Curr Opin Ophthalmol, 2019, 30(1): 9-12.
|
[5] |
黄锦海,叶向彧. 眼球生物测量与IOL屈光力计算[M]. 1版. 北京:人民卫生出版社,2019:7-8.
|
[6] |
Olsen T. Calculation of intraocular lens power: a review[J]. Acta Ophthalmol Scand, 2007, 85(5): 472-485.
|
[7] |
Antwi-Adjei EK, Owusu E, Kobia-Acquah E, et al. Evaluation of postoperative refractive error correction after cataract surgery[J]. PLoS One, 2021, 16(6): e0252787.
|
[8] |
Kiss B, Findl O, Menapace R, et al. Refractive outcome of cataract surgery using partial coherence interferometry and ultrasound biometry: clinical feasibility study of a commercial prototype II[J]. J Cataract Refract Surg, 2002, 28(2): 230-234.
|
[9] |
Dietlein TS, Roessler G, Luke C, et al. Signal quality of biometry in silicone oil-filled eyes using partial coherence laser interferometry[J]. J Cataract Refract Surg, 2005, 31(5): 1006-1010.
|
[10] |
Hoffmann PC, Hütz WW, Eckhardt HB, et al. Intraocular lens calculation and ultrasound biometry: immersion and contact procedures[J]. Klin Monatsbl Augenheilkd, 1998, 213(3): 161-165.
|
[11] |
Findl O, Kriechbaum K, Sacu S, et al. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery[J]. J Cataract Refract Surg, 2003, 29(10): 1950-1955.
|
[12] |
Ianchulev T, Hoffer KJ, Yoo SH, et al. Intraoperative refractive biometry for predicting intraocular lens power calculation after prior myopic refractive surgery[J]. Ophthalmology, 2014, 121(1): 56-60.
|
[13] |
Landers J, Goggin M. Comparison of refractive outcomes using immersion ultrasound biometry and IOLMaster biometry[J]. Clin Experiment Ophthalmol, 2009, 37(6): 566-569.
|
[14] |
Rajan MS, Keilhorn I, Bell JA. Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculations[J]. Eye (Lond), 2002, 16(5): 552-556.
|
[15] |
Olsen T, Thorwest M. Calibration of axial length measurements with the Zeiss IOLMaster[J]. J Cataract Refract Surg, 2005, 31(7): 1345-1350.
|
[16] |
Nemeth J, Fekete O, Pesztenlehrer N. Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation[J]. J Cataract Refract Surg, 2003, 29(1): 85-88.
|
[17] |
Shajari M, Cremonese C, Petermann K, et al. Comparison of Axial Length, Corneal Curvature, and Anterior Chamber Depth Measurements of 2 Recently Introduced Devices to a Known Biometer[J]. Am J Ophthalmol, 2017, 178: 58-64.
|
[18] |
Kunert KS, Peter M, Blum M, et al. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry[J]. J Cataract Refract Surg, 2016, 42(1): 76-83.
|
[19] |
Mylonas G, Sacu S, Buehl W, et al. Performance of three biometry devices in patients with different grades of age-related cataract[J]. Acta Ophthalmol, 2011, 89(3): e237-e241.
|
[20] |
McAlinden C, Wang Q, Gao R, et al. Axial Length Measurement Failure Rates With Biometers Using Swept-Source Optical Coherence Tomography Compared to Partial-Coherence Interferometry and Optical Low-Coherence Interferometry[J]. Am J Ophthalmol, 2017, 173: 64-69.
|
[21] |
Kane JX, Chang DF. Intraocular Lens Power Formulas, Biometry, and Intraoperative Aberrometry: A Review[J]. Ophthalmology, 2021, 128(11): e94-e114.
|
[22] |
Gupta PC, Caty JT. Astigmatism evaluation prior to cataract surgery[J]. Curr Opin Ophthalmol, 2018, 29(1): 9-13.
|
[23] |
Kamiya K, Fujimura F, Iijima K, et al. Regional comparison of preoperative biometry for cataract surgery between two domestic institutions[J]. Int Ophthalmol, 2020, 40(11): 2923-2930.
|
[24] |
He X, Huang AS, Jeng BH. Optimizing the ocular surface prior to cataract surgery[J]. Curr Opin Ophthalmol, 2022, 33(1): 9-14.
|
[25] |
Wang L, Koch DD. Intraocular Lens Power Calculations in Eyes with Previous Corneal Refractive Surgery: Review and Expert Opinion[J]. Ophthalmology, 2021, 128(11): e121-e131.
|
[26] |
Wang L, Mahmoud AM, Anderson BL, et al. Total corneal power estimation: ray tracing method versus gaussian optics formula[J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1716-1722.
|
[27] |
Saad E, Shammas MC, Shammas HJ. Scheimpflug corneal power measurements for intraocular lens power calculation in cataract surgery[J]. Am J Ophthalmol, 2013, 156(3): 460-467.
|
[28] |
Hoshikawa R, Kamiya K, Fujimura F, et al. Comparison of Conventional Keratometry and Total Keratometry in Normal Eyes[J]. Biomed Res Int, 2020, 13: 8075924.
|
[29] |
Symes RJ, Ursell PG. Automated keratometry in routine cataract surgery: comparison of Scheimpflug and conventional values[J]. J Cataract Refract Surg, 2011, 37(2): 295-301.
|
[30] |
Falavarjani KG, Hashemi M, Joshaghani M, et al. Determining corneal power using Pentacam after myopic photorefractive keratectomy[J]. Clin Exp Ophthalmol, 2010, 38(4): 341-345.
|
[31] |
Jin H, Auffarth GU, Guo H, et al. Corneal power estimation for intraocular lens power calculation after corneal laser refractive surgery in Chinese eyes[J]. J Cataract Refract Surg, 2012, 38(10): 1749-1757.
|
[32] |
Haigis W. Corneal power after refractive surgery for myopia: contact lens method[J]. J Cataract Refract Surg, 2003, 29(7): 1397-1411.
|
[33] |
Shammas HJ, Shammas MC. No-history method of intraocular lens power calculation for cataract surgery after myopic laser in situ keratomileusis[J]. J Cataract Refract Surg, 2007, 33(1): 31-36.
|
[34] |
Mandell RB. Corneal power correction factor for photorefractive keratectomy[J]. J Refract Corneal Surg, 1994, 10(2): 125-128.
|
[35] |
Lawless M, Jiang JY, Hodge C, et al. Total keratometry in intraocular lens power calculations in eyes with previous laser refractive surgery[J]. Clin Exp Ophthalmol, 2020, 48(6): 749-756.
|
[36] |
Seo KY, Im CY, Yang H, et al. New equivalent keratometry reading calculation with a rotating Scheimpflug camera for intraocular lens power calculation after myopic corneal surgery[J]. J Cataract Refract Surg, 2014, 40(11): 1834-1842.
|
[37] |
Wang L, Spektor T, de Souza RG, et al. Evaluation of total keratometry and its accuracy for intraocular lens power calculation in eyes after corneal refractive surgery[J]. J Cataract Refract Surg, 2019, 45(10): 1416-1421.
|
[38] |
Meng J, Yu J, He W, et al. The Influence of Analysis Mode Selection on Prediction Accuracy of Corneal Astigmatism Using Pentacam[J]. Front Med (Lausanne), 2021, 8: 713502.
|
[39] |
Savini G, Næser K, Schiano-Lomoriello D, et al. Optimized keratometry and total corneal astigmatism for toric intraocular lens calculation[J]. J Cataract Refract Surg, 2017, 43(9): 1140-1148.
|
[40] |
沈琳,王霄娜,李栋军,等. 扫频源前节相干光层析成像术与超声生物显微镜测量老年性白内障患者眼前节参数的一致性分析[J]. 中华眼科杂志,2018,54(9):678-682.
|
[41] |
王子杨,杨文利,李栋军,等. 新型生物测量仪Pentacam AXL、IOLMaster 700与IOLMaster 500对白内障眼部生物学参数测量的比较[J]. 中华眼科杂志,2019,55(7):515-521.
|
[42] |
Nixon DR. Preoperative cataract grading by Scheimpflug imaging and effect on operative fluidics and phacoemulsification energy[J]. J Cataract Refract Surg, 2010, 36(2): 242-246.
|
[43] |
Wang W, Zhang J, Gu X, et al. Objective quantification of lens nuclear opacities using swept-source anterior segment optical coherence tomography[J]. Br J Ophthalmol, 2022, 106(6): 790-794.
|
[44] |
Chen D, Li Z, Huang J, et al. Lens nuclear opacity quantitation with long-range swept-source optical coherence tomography: correlation to LOCS III and a Scheimpflug imaging-based grading system[J]. Br J Ophthalmol, 2019, 103(8): 1048-1053.
|
[45] |
Sayed KM, Alsamman AH. Interchangeability between Pentacam and IOLMaster in phakic intraocular lens calculation[J]. Eur J Ophthalmol, 2015, 25(3): 202-207.
|
[46] |
Domínguez-Vicent A, Pérez-Vives C, Ferrer-Blasco T, et al. Interchangeability among five devices that measure anterior eye distances[J]. Clin Exp Optom, 2015, 98(3): 254-262.
|
[47] |
Chen X, Han T, Zhao W, et al. Effect of the Difference Between the White-to-White and Sulcus-to-Sulcus on Vault and the Related Factors After ICL Implantation[J]. Ophthalmol Ther, 2021, 10(4): 947-955.
|
[48] |
Igarashi A, Shimizu K, Kato S, et al. Predictability of the vault after posterior chamber phakic intraocular lens implantation using anterior segment optical coherence tomography[J]. J Cataract Refract Surg, 2019, 45(8): 1099-1104.
|
[49] |
Kato Y, Kojima T, Tamaoki A, et al. Refractive prediction error in cataract surgery using an optical biometer equipped with anterior segment OCT[J]. J Cataract Refract Surg, 2022, 48(4): 429-434.
|
[50] |
Meng J, Du Y, Wei L, et al. Distribution of angle α and angle κ in a population with cataract in Shanghai[J]. J Cataract Refract Surg, 2021, 47(5): 579-584.
|
[51] |
中华医学会眼科学分会白内障及人工晶状体学组. 中国多焦点人工晶状体临床应用专家共识(2019年)[J]. 中华眼科杂志,2019,55(7):491-494.
|
[52] |
Chen X, Gu X, Wang W, et al. Distributions of crystalline lens tilt and decentration and associated factors in age-related cataract[J]. J Cataract Refract Surg, 2021, 47(10): 1296-1301.
|
[53] |
Hirnschall N, Buehren T, Bajramovic F, et al. Prediction of postoperative intraocular lens tilt using swept-source optical coherence tomography[J]. J Cataract Refract Surg, 2017, 43(6): 732-736.
|
[54] |
Wang L, Guimaraes de Souza R, Weikert MP, et al. Evaluation of crystalline lens and intraocular lens tilt using a swept-source optical coherence tomography biometer[J]. J Cataract Refract Surg, 2019, 45(1): 35-40.
|
[55] |
俞阿勇. 角膜光学特性与人工晶状体优选[M]. 1版. 北京:人民卫生出版社,2017:39-41.
|