[1] |
Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology[J]. Mol Vis, 2016, 22: 61-72.
|
[2] |
Zhao ZC, Zhou Y, Tan G, et al. Research progress about the effect and prevention of blue light on eyes[J]. Int J Ophthalmol, 2018, 11(12): 1999-2003.
|
[3] |
唐颖,田甜,葛红岩. 干眼症发病机制与发病因素的研究进展[J]. 医学综述,2019,25(11):2196-2201.
|
[4] |
张正,李银花,丁亚丽,等.干眼症的发病机制及治疗现状[J/CD].中华眼科医学杂志(电子版),2014,4(2): 44-46.
|
[5] |
亚洲干眼协会中国分会,海峡两岸医药卫生交流协会眼科学专业委员会眼表与泪液病学组,中国医师协会眼科医师分会眼表与干眼学组. 中国干眼专家共识:定义和分类(2020年)[J].中华眼科杂志,2020,56(6):418-422.
|
[6] |
Zoukhri D, Hodges RR, Byon D, et al. Role of proinflammatory cytokines in the impaired lacrimation associated withautoimmune xerophthalmia[J]. Invest Ophtalmol Vis Sci, 2002, 43(5): 1429-1436.
|
[7] |
Chen GY, Nuňez G. Sterile inflammation: sensing and reacting to damage[J]. Nat Rev Immunol, 2010, 10(12): 826-837.
|
[8] |
Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: Toll-like receptors[J]. Free Radic Biol Med, 2010, 48(9): 1121-1132.
|
[9] |
刘常明,尹忠贵.氧化损伤与干眼发病关系的研究[J].临床眼科杂志,2018,26(3):285-287.
|
[10] |
Ohguchi T, Kojima T, Ibrahim OM, et al. The effects of 2% rebamipide ophthalmic solution on the tear functions and ocular surface of the superoxide dismutase-1 (sod1) knockout mice[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7793-7802.
|
[11] |
Cejková J, Ardan T, Jirsová K, et al. The role of conjunctival epithelial cell xanthine oxidoreductase/xanthine oxidase in oxidative reactions on the ocular surface of dry eye patients with Sjögren′s syndrome[J]. Histol Histopathol, 2007, 22(9): 997-1003.
|
[12] |
Marek V, Mélik-Parsadaniantz S, Villette T, et al. Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions[J]. Free Radic Biol Med, 2018, 126: 27-40.
|
[13] |
Zheng QX, Ren YP, Reinach PS, et al. Reactive oxygen species activated NLRP3 inflammasomes initiate inflammation in hyperosmolarity stressed human corneal epithelial cells and environment-induced dry eye patients[J]. Exp Eye Res, 2015, 134: 133-140.
|
[14] |
Yamaguchi T. Inflammatory response in dry eye[J]. Invest Ophthalmol Vis Sci, 2018, 59(14): 192-199.
|
[15] |
Cejka C, Cejkova J. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries[J]. Oxid Med Cell Longev, 2015: 591530.
|
[16] |
Lee HS, Cui L, Li Y, et al. Influence of light emitting diode-derived blue light overexposure on mouse ocular surface[J]. PLoS One, 2016, 11: 161041.
|
[17] |
Jun I, Han SJ, Shin HS, et al. Comparison of ophthalmic toxicity of light-emitting diode and organic light-emitting diode light sources[J]. Sci Rep, 2020, 10(1): 11582.
|
[18] |
del Olmo-Aguado S, Núñez-Álvarez C, Osborne NN. Blue light action on mitochondria leads to cell death by necroptosis[J]. Neurochemical Res, 2016, 41(9): 2324-2335.
|
[19] |
Lee JB, Kim SH, Lee SC, et al. Blue light-induced oxidative stress in human corneal epithelial cells: protective effectsof ethanol extracts of various medicinal plant mixtures[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4119-4127.
|
[20] |
蔡永民. 白内障发病机制及治疗进展研究[J]. 医学理论与实践,2020,33(15):2450-2452.
|
[21] |
Xie C, Li XY, Tong JP, et al. Effects of white light-emitting diode (LED) light exposure with different correlated Colortemperatures (CCTs) on human lens epithelial cells in culture[J].Photochem Photobiol, 2014, 90(4): 853-859.
|
[22] |
魏树瑾. 晶状体上皮细胞光损伤与活性氧作用及TGF-β2/Smad3信号传导通路的研究[D]. 天津:天津医科大学,2014.
|
[23] |
刘铁刚. 不同波长LED光对晶状体影响的初步研究[D]. 天津:天津医科大学,2019.
|
[24] |
姚领. LED光对大鼠晶状体影响的初步研究[D]. 天津:天津医科大学,2018.
|
[25] |
Wang Y, Zhang M, Sun Y, et al. Role of short-wavelength blue light in the formation of cataracts and the expressionof caspase-1, caspase-11, gasdermin D in rat lens epithelial cells: insights into a novel pathogenic mechanism of cataracts[J]. BMC Ophthalmol, 2020, 20(1): 289.
|
[26] |
王晓慧,李志坚. 短波蓝光对眼部损伤的研究进展[J]. 医学综述,2021,27(1):116-120.
|
[27] |
Chen JT, Wu HJ. Blue light from electronic devices may be an important factor for vitreous floaters[J]. Medical Hypotheses, 2020, 139: 109698.
|
[28] |
Chen WJ, Wu C, Xu Z, et al. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light[J]. Exp Eye Res, 2017, 154: 151-158.
|
[29] |
Lin CW, Yang CM, Yang CH. Protective effect of astaxanthin on blue light light-emitting diode-induced retinal celldamage via free radical scavenging and activation of PI3K/Akt/Nrf2 Pathway in 661W cell model[J]. Mar Drugs, 2020, 18(8): 387.
|
[30] |
Ooe E, Kuse Y, Yako T, et al. Bilberry extract and anthocyanins suppress unfolded protein response induced by exposure to blue LED light of cells in photoreceptor cell line[J]. Mol Vis, 2018, 24: 621-632.
|
[31] |
Osborne NN, del Olmo-Aguado S, Núñez-Álvarez C, et al. Visual light effects on mitochondria: the potential implications in relationto glaucoma[J]. Mitochondrion, 2017, 36: 29-35.
|
[32] |
Huang C, Zhang P, Wang W, et al. Long term blue light exposure induces RGC-5 cell death in vitro: involvement ofmitochondria dependent apoptosis, oxidative stress, and MAPK signaling pathways[J]. Apoptosis, 2014, 19(6): 922-932.
|
[33] |
Li JY, Zhang K, Xu D, et al. Mitochondrial fission is required for blue light-induced apoptosis and mitophagy in retinalneuronal R28 Cells[J]. Front Mol Neurosci, 2018, 11: 432.
|
[34] |
Ozawa Y. Oxidative stress in the light-exposed retina and its implication in age-related macular degeneration[J]. Redox Biol, 2020, 37: 101779.
|
[35] |
Bird A. Role of retinal pigment epithelium in age-related macular disease: a systematic review[J]. Br J Ophthalmol, 2021, 105(11): 1469-1474.
|
[36] |
白鸽,张东蕾,何伟.中药单体对视网膜色素上皮细胞氧化损伤保护作用研究进展[J]. 实用中医内科杂志,2020,34(6):108-112.
|
[37] |
张英俊,白鸽,何向东,等. 秦皮乙素对氧化损伤ARPE-19细胞的保护作用及其机制[J]. 中华实验眼科杂志,2020,38(12):1025-1031.
|
[38] |
Tang CZ, Li KR, Yu Q, et al. Activation of Nrf2 by Ginsenoside Rh3 protects retinal pigment epithelium cells andretinal ganglion cells from UV[J]. Free Radic Biol Med, 2018, 117: 238-246.
|
[39] |
曹茜. 枸杞多糖对H2O2诱导的人视网膜色素上皮细胞自噬的影响[D]. 南京:南京中医药大学,2018.
|
[40] |
Weng S, Mao L, Gong Y, et al. Role of quercetin in protecting ARPE19 cells against H2O2 induced injury via nuclear factor erythroid 2 like 2 pathway activation and endoplasmic reticulum stress inhibition[J]. Mol Med Rep, 2017, 16(3): 3461-3458.
|
[41] |
邹秀兰,俞永珍,徐哲,等. 蓝光诱导的人视网膜色素上皮细胞的氧化损伤及其线粒体机制[J].中华实验眼科杂志,2015,33(2):129-134.
|
[42] |
杜秀娟,董卫红,毕宏生,等.枸杞多糖对蓝光诱导损伤人视网膜色素上皮细胞凋亡及线粒体膜电位影响[J].中国实用眼科杂志,2013,31(4):489-493.
|
[43] |
Chang CH, Chiu HF, Han YC, et al. Photoprotective effects of cranberry juice and its various fractions against blue light-induced impairment in human retinal pigment epithelial cells[J]. Pharm Biol, 2017, 55(1): 571-580.
|
[44] |
Li HY, Lee CJ, Wen YC, et al. EGCG, a major polyphenol in green tea, protects human retinal pigment epithelium (ARPE-19) cells from viable blue light-induced disorders[J]. Life Sci J, 2014, 11(4): 424-427.
|
[45] |
Kim J, Cho K, Choung SY. Protective effect of Prunella vulgaris var. L extract against blue light induced damages in ARPE-19 cells and mouse retina[J]. Free Radic Biol Med, 2020, 152: 622-631.
|
[46] |
Pham T, Shin CY, Park SH, et al. Solanum Melongena L. extract protects retinal pigment epithelial cells from blue light-induced phototoxicity in vitro and in vivo models[J]. Nutrients, 2021, 13(2): 359.
|
[47] |
Lee BL, Kang JH, Kim HM, et al. Polyphenol-enriched Vaccinium uliginosum L. fractions reduce retinal damage induced by blue light in A2E-laden ARPE-19 cell cultures and mice[J].Nutr Res, 2016, 36(12): 1403-1414.
|
[48] |
Sparrow JR, Zhou J, Ben-Shabat S, et al. Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE[J]. Invest Ophthalmol Vis, 2002, 43(4): 1222-1227.
|
[49] |
van der Burght B, Hansen M, Olsen J, et al. Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells[J]. Acta ophthalmol, 2013, 91(7): 537-545.
|
[50] |
Lin CH, Wu MR, Huang W J, et al. Low-luminance blue light-enhanced phototoxicity in A2E-Laden RPE cell cultures and rats[J]. Int J Mol Sci, 2019, 20(7): 1799.
|
[51] |
Bian QN, Gao SS, Zhou JL, et al. Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells[J]. Free Radic Biol Med, 2012, 53(6): 1298-1307.
|
[52] |
Park SI, Lee EH, Kim SR, et al. Anti-apoptotic effects of Curcuma longa L.extract and its curcuminoids against blue light-induced cytotoxicity in A2E-laden human retinal pigment epithelial cells[J]. J Pharm Pharmacol, 2017, 69(3): 334-340.
|