切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (03) : 168 -172. doi: 10.3877/cma.j.issn.2095-2007.2022.03.008

综述

蓝光照射氧化损伤模型在眼部疾病中应用的研究进展
姜金玉1, 张东蕾2,(), 何伟2   
  1. 1. 110016 沈阳药科大学生命科学与生物制药学院2019级硕士研究生
    2. 160163 沈阳,辽宁何氏医学院
  • 收稿日期:2021-10-24 出版日期:2022-06-28
  • 通信作者: 张东蕾
  • 基金资助:
    辽宁省科学技术计划项目(2019JH2/10300011)

Advances in the application of blue light induced-oxidative damage models in the study of ophthalmic diseases

Jinyu Jiang1, Donglei Zhang2,(), Wei He2   

  1. 1. School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang 110000, China
    2. He University School of Clinical Medicine, Shenyang 110016, China
  • Received:2021-10-24 Published:2022-06-28
  • Corresponding author: Donglei Zhang
引用本文:

姜金玉, 张东蕾, 何伟. 蓝光照射氧化损伤模型在眼部疾病中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 168-172.

Jinyu Jiang, Donglei Zhang, Wei He. Advances in the application of blue light induced-oxidative damage models in the study of ophthalmic diseases[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(03): 168-172.

波长在400~500 nm的蓝光因其波长短且能量高,可损伤眼表到眼底不同结构的组织细胞,诱发与氧化应激有关的眼部疾病。近年来,利用蓝光照射构建眼部组织损伤模型的研究日益增多。本文中笔者就国内外蓝光氧化损伤体内动物实验和体外细胞实验的研究进展进行综述,分析并总结蓝光波长、照射强度及照射时长对眼部组织细胞影响的分子机制,以期提高对蓝光的认知、指导眼部防护及推动蓝光诱导氧化损伤治疗药物的开发。

Blue light with the wavelength at 400 nm to 500 nm could cause some damages to different tissues from the eye surface to the fundus because of its high energy, thus causing a series of ophthalmic diseases related to oxidative stress. At present, animal experiments in vivo and cell models in vitro using blue light irradiation to explore the damage of eye tissue had been reported. The domestic and foreign literature published in recent years about the damage caused by blue light wavelengths, the irradiation intensity and irradiation time were reviewed, and the molecular mechanism of damage were analyzed, which to improve the cognition, advise eye protection, and promote to develop drugs for the oxidative damage from blue light to the eyes.

图1 蓝光照射氧化损伤眼部疾病模型机制示意图 图示过度蓝光照射能够激发眼表到眼底不同结构的组织细胞发生氧化应激反应,可引起干眼、白内障、飞蚊症、青光眼及年龄相关性黄斑变性疾病
表1 蓝光照射模型在眼部疾病研究中应用的汇总
蓝光波长(nm) 实验对象 实验条件 模型 结论 参考文献
400~420 C57BL/6小鼠 50 J/cm2,连续照射10 d 干眼 小鼠泪膜破裂时间降低,眼表组织炎性因子白细胞介素-1β及白细胞介素-6表达增多 [16]
  人角膜上皮细胞 >10 J/cm2 干眼 含有五味子、白芷及边沁等提取物能调节细胞内抗氧化物酶活性,降低过度产生的活性氧 [19]
421~440 Balb/c小鼠 10 000 lux/d,1 h/d,连续14 d, 年龄相关性黄斑变性 小鼠视网膜发生氧化损伤,且夏枯草提取物能够提高其抗氧化物酶活性,降低脂质过氧化物水平 [45]
  人视网膜色素上皮细胞 添加脂褐素光敏剂   脂褐素光敏剂N-亚视黄基-N-视黄基-乙醇胺可加速蓝光对视网膜色素上皮细胞的损伤 [46,51]
441~460 SD大鼠 照射12周 白内障 SD大鼠晶状体凋亡标志物半胱氨酸蛋白酶-1、半胱氨酸蛋白酶-11及焦亡蛋白表达增加 [25]
  人工晶状体上皮细胞 2500 lux,5 h   人工晶状体上皮细胞凋亡 [25]
  视网膜神经前体细胞R28 1000 lux,12 h   细胞线粒体裂解蛋白和融合蛋白表达异常,细胞线粒体功能受损 [33]
  人视网膜色素上皮细胞 (4±0.5)mW/cm2,5~6 h   细胞损伤是细胞凋亡或坏死的节点;脂褐素光敏剂可增加细胞内的凋亡蛋白、紧密连接蛋白-1以及血管内皮生长因子的表达 [41,50]
461~480 SD大鼠 500 lux/d,12 h/d,连续5 d 白内障 SD大鼠晶状体内抗氧化酶活性下降 [24]
  小鼠光感受器细胞 450 lux,6 h;添加越橘提取物和花青素   细胞S-视蛋白表达升高,添加越橘提取物和花青素后抗氧化作用明显 [30]
  人视网膜色素上皮细胞 (2000±500) lux,12 h;添加枸杞多糖   细胞氧化损伤,添加枸杞多糖后能够增强色素上皮细胞线粒体膜电位,有抗氧化作用 [42]
  Balb/c小鼠 10 000 lux,1 h/d,连续14 d 年龄相关性黄斑变性 小鼠视网膜厚度降低,视网膜内核转录因子-κB和脱氧核糖核酸修复酶的裂解增加 [46,47]
[1]
Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology[J]. Mol Vis, 2016, 22: 61-72.
[2]
Zhao ZC, Zhou Y, Tan G, et al. Research progress about the effect and prevention of blue light on eyes[J]. Int J Ophthalmol, 2018, 11(12): 1999-2003.
[3]
唐颖,田甜,葛红岩. 干眼症发病机制与发病因素的研究进展[J]. 医学综述201925(11):2196-2201.
[4]
张正,李银花,丁亚丽,等.干眼症的发病机制及治疗现状[J/CD].中华眼科医学杂志(电子版)20144(2): 44-46.
[5]
亚洲干眼协会中国分会,海峡两岸医药卫生交流协会眼科学专业委员会眼表与泪液病学组,中国医师协会眼科医师分会眼表与干眼学组. 中国干眼专家共识:定义和分类(2020年)[J].中华眼科杂志202056(6):418-422.
[6]
Zoukhri D, Hodges RR, Byon D, et al. Role of proinflammatory cytokines in the impaired lacrimation associated withautoimmune xerophthalmia[J]. Invest Ophtalmol Vis Sci, 2002, 43(5): 1429-1436.
[7]
Chen GY, Nuňez G. Sterile inflammation: sensing and reacting to damage[J]. Nat Rev Immunol, 2010, 10(12): 826-837.
[8]
Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: Toll-like receptors[J]. Free Radic Biol Med, 2010, 48(9): 1121-1132.
[9]
刘常明,尹忠贵.氧化损伤与干眼发病关系的研究[J].临床眼科杂志201826(3):285-287.
[10]
Ohguchi T, Kojima T, Ibrahim OM, et al. The effects of 2% rebamipide ophthalmic solution on the tear functions and ocular surface of the superoxide dismutase-1 (sod1) knockout mice[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7793-7802.
[11]
Cejková J, Ardan T, Jirsová K, et al. The role of conjunctival epithelial cell xanthine oxidoreductase/xanthine oxidase in oxidative reactions on the ocular surface of dry eye patients with Sjögren′s syndrome[J]. Histol Histopathol, 2007, 22(9): 997-1003.
[12]
Marek V, Mélik-Parsadaniantz S, Villette T, et al. Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions[J]. Free Radic Biol Med, 2018, 126: 27-40.
[13]
Zheng QX, Ren YP, Reinach PS, et al. Reactive oxygen species activated NLRP3 inflammasomes initiate inflammation in hyperosmolarity stressed human corneal epithelial cells and environment-induced dry eye patients[J]. Exp Eye Res, 2015, 134: 133-140.
[14]
Yamaguchi T. Inflammatory response in dry eye[J]. Invest Ophthalmol Vis Sci, 2018, 59(14): 192-199.
[15]
Cejka C, Cejkova J. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries[J]. Oxid Med Cell Longev, 2015: 591530.
[16]
Lee HS, Cui L, Li Y, et al. Influence of light emitting diode-derived blue light overexposure on mouse ocular surface[J]. PLoS One, 2016, 11: 161041.
[17]
Jun I, Han SJ, Shin HS, et al. Comparison of ophthalmic toxicity of light-emitting diode and organic light-emitting diode light sources[J]. Sci Rep, 2020, 10(1): 11582.
[18]
del Olmo-Aguado S, Núñez-Álvarez C, Osborne NN. Blue light action on mitochondria leads to cell death by necroptosis[J]. Neurochemical Res, 2016, 41(9): 2324-2335.
[19]
Lee JB, Kim SH, Lee SC, et al. Blue light-induced oxidative stress in human corneal epithelial cells: protective effectsof ethanol extracts of various medicinal plant mixtures[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4119-4127.
[20]
蔡永民. 白内障发病机制及治疗进展研究[J]. 医学理论与实践202033(15):2450-2452.
[21]
Xie C, Li XY, Tong JP, et al. Effects of white light-emitting diode (LED) light exposure with different correlated Colortemperatures (CCTs) on human lens epithelial cells in culture[J].Photochem Photobiol, 2014, 90(4): 853-859.
[22]
魏树瑾. 晶状体上皮细胞光损伤与活性氧作用及TGF-β2/Smad3信号传导通路的研究[D]. 天津:天津医科大学,2014.
[23]
刘铁刚. 不同波长LED光对晶状体影响的初步研究[D]. 天津:天津医科大学,2019.
[24]
姚领. LED光对大鼠晶状体影响的初步研究[D]. 天津:天津医科大学,2018.
[25]
Wang Y, Zhang M, Sun Y, et al. Role of short-wavelength blue light in the formation of cataracts and the expressionof caspase-1, caspase-11, gasdermin D in rat lens epithelial cells: insights into a novel pathogenic mechanism of cataracts[J]. BMC Ophthalmol, 2020, 20(1): 289.
[26]
王晓慧,李志坚. 短波蓝光对眼部损伤的研究进展[J]. 医学综述202127(1):116-120.
[27]
Chen JT, Wu HJ. Blue light from electronic devices may be an important factor for vitreous floaters[J]. Medical Hypotheses, 2020, 139: 109698.
[28]
Chen WJ, Wu C, Xu Z, et al. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light[J]. Exp Eye Res, 2017, 154: 151-158.
[29]
Lin CW, Yang CM, Yang CH. Protective effect of astaxanthin on blue light light-emitting diode-induced retinal celldamage via free radical scavenging and activation of PI3K/Akt/Nrf2 Pathway in 661W cell model[J]. Mar Drugs, 2020, 18(8): 387.
[30]
Ooe E, Kuse Y, Yako T, et al. Bilberry extract and anthocyanins suppress unfolded protein response induced by exposure to blue LED light of cells in photoreceptor cell line[J]. Mol Vis, 2018, 24: 621-632.
[31]
Osborne NN, del Olmo-Aguado S, Núñez-Álvarez C, et al. Visual light effects on mitochondria: the potential implications in relationto glaucoma[J]. Mitochondrion, 2017, 36: 29-35.
[32]
Huang C, Zhang P, Wang W, et al. Long term blue light exposure induces RGC-5 cell death in vitro: involvement ofmitochondria dependent apoptosis, oxidative stress, and MAPK signaling pathways[J]. Apoptosis, 2014, 19(6): 922-932.
[33]
Li JY, Zhang K, Xu D, et al. Mitochondrial fission is required for blue light-induced apoptosis and mitophagy in retinalneuronal R28 Cells[J]. Front Mol Neurosci, 2018, 11: 432.
[34]
Ozawa Y. Oxidative stress in the light-exposed retina and its implication in age-related macular degeneration[J]. Redox Biol, 2020, 37: 101779.
[35]
Bird A. Role of retinal pigment epithelium in age-related macular disease: a systematic review[J]. Br J Ophthalmol, 2021, 105(11): 1469-1474.
[36]
白鸽,张东蕾,何伟.中药单体对视网膜色素上皮细胞氧化损伤保护作用研究进展[J]. 实用中医内科杂志202034(6):108-112.
[37]
张英俊,白鸽,何向东,等. 秦皮乙素对氧化损伤ARPE-19细胞的保护作用及其机制[J]. 中华实验眼科杂志202038(12):1025-1031.
[38]
Tang CZ, Li KR, Yu Q, et al. Activation of Nrf2 by Ginsenoside Rh3 protects retinal pigment epithelium cells andretinal ganglion cells from UV[J]. Free Radic Biol Med, 2018, 117: 238-246.
[39]
曹茜. 枸杞多糖对H2O2诱导的人视网膜色素上皮细胞自噬的影响[D]. 南京:南京中医药大学,2018.
[40]
Weng S, Mao L, Gong Y, et al. Role of quercetin in protecting ARPE19 cells against H2O2 induced injury via nuclear factor erythroid 2 like 2 pathway activation and endoplasmic reticulum stress inhibition[J]. Mol Med Rep, 2017, 16(3): 3461-3458.
[41]
邹秀兰,俞永珍,徐哲,等. 蓝光诱导的人视网膜色素上皮细胞的氧化损伤及其线粒体机制[J].中华实验眼科杂志201533(2):129-134.
[42]
杜秀娟,董卫红,毕宏生,等.枸杞多糖对蓝光诱导损伤人视网膜色素上皮细胞凋亡及线粒体膜电位影响[J].中国实用眼科杂志201331(4):489-493.
[43]
Chang CH, Chiu HF, Han YC, et al. Photoprotective effects of cranberry juice and its various fractions against blue light-induced impairment in human retinal pigment epithelial cells[J]. Pharm Biol, 2017, 55(1): 571-580.
[44]
Li HY, Lee CJ, Wen YC, et al. EGCG, a major polyphenol in green tea, protects human retinal pigment epithelium (ARPE-19) cells from viable blue light-induced disorders[J]. Life Sci J, 2014, 11(4): 424-427.
[45]
Kim J, Cho K, Choung SY. Protective effect of Prunella vulgaris var. L extract against blue light induced damages in ARPE-19 cells and mouse retina[J]. Free Radic Biol Med, 2020, 152: 622-631.
[46]
Pham T, Shin CY, Park SH, et al. Solanum Melongena L. extract protects retinal pigment epithelial cells from blue light-induced phototoxicity in vitro and in vivo models[J]. Nutrients, 2021, 13(2): 359.
[47]
Lee BL, Kang JH, Kim HM, et al. Polyphenol-enriched Vaccinium uliginosum L. fractions reduce retinal damage induced by blue light in A2E-laden ARPE-19 cell cultures and mice[J].Nutr Res, 2016, 36(12): 1403-1414.
[48]
Sparrow JR, Zhou J, Ben-Shabat S, et al. Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE[J]. Invest Ophthalmol Vis, 2002, 43(4): 1222-1227.
[49]
van der Burght B, Hansen M, Olsen J, et al. Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells[J]. Acta ophthalmol, 2013, 91(7): 537-545.
[50]
Lin CH, Wu MR, Huang W J, et al. Low-luminance blue light-enhanced phototoxicity in A2E-Laden RPE cell cultures and rats[J]. Int J Mol Sci, 2019, 20(7): 1799.
[51]
Bian QN, Gao SS, Zhou JL, et al. Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells[J]. Free Radic Biol Med, 2012, 53(6): 1298-1307.
[52]
Park SI, Lee EH, Kim SR, et al. Anti-apoptotic effects of Curcuma longa L.extract and its curcuminoids against blue light-induced cytotoxicity in A2E-laden human retinal pigment epithelial cells[J]. J Pharm Pharmacol, 2017, 69(3): 334-340.
[1] 李润泽, 任剑寒, 黄德兰, 罗皓天, 周晨, 王伟财. 长链非编码RNA调控成骨分化的研究现状及展望[J]. 中华口腔医学研究杂志(电子版), 2020, 14(05): 271-279.
[2] 李丁昌, 曹李, 陈鹏, 董光龙. 结直肠癌肝转移多阶段机制研究进展[J]. 中华普外科手术学杂志(电子版), 2021, 15(06): 696-699.
[3] 赖金惠, 刘忠忠, 李玲, 钟自彪, 叶少军, 王彦峰, 叶啟发. 肝脏缺血再灌注损伤分子机制的研究进展[J]. 中华移植杂志(电子版), 2018, 12(04): 188-192.
[4] 刘晓梅, 张露, 刘旭, 梁蝶. 巨噬细胞迁移抑制因子靶向miR-127-3p对人肾癌细胞生物学行为的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 76-83.
[5] 李卓林, 贾如雪, 吴亚婷, 张胜行, 王水良. 肿瘤转移的分子机制及靶向干预研究新进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 51-58.
[6] 张梦圆, 刘晋灵, 王彤, 张宝林. 黑色素母细胞沿神经的迁移[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 48-50.
[7] 曹润峰, 葛俊文, 方霞, 沈立. 间充质干细胞源性外泌体microRNA在心脏缺血性损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 40-47.
[8] 曹冰, 张晓明, 梁富龙. 单细胞测序分析人类胚胎干细胞神经分化的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 1-7.
[9] 曹润峰, 沈立. miRNA在心肌梗死中的作用及其机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(06): 363-368.
[10] 胡明泰, 郑玉廷, 谢峰. 胆囊癌病因及分子机制研究进展[J]. 中华肝脏外科手术学电子杂志, 2021, 10(02): 224-226.
[11] 金玺, 孙康, 郭建, 孔梅. 结直肠癌肝转移发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(02): 163-166.
[12] 李坚, 陶勇, 郦舒伊, 张小花, 胡勇平. 细胞因子与眼科疾病的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(02): 115-119.
[13] 柳睿, 马建民. 泪腺腺样囊性癌相关分子机制的研究进展[J]. 中华眼科医学杂志(电子版), 2020, 10(03): 177-182.
[14] 柯杨. 食管鳞癌精准防治基础研究概述[J]. 中华临床医师杂志(电子版), 2021, 15(01): 1-9.
[15] 沈慧, 张振刚, 龚开政. 肺动脉高压动物模型与分子机制的研究进展[J]. 中华临床医师杂志(电子版), 2019, 13(02): 141-146.
阅读次数
全文


摘要