切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2021, Vol. 11 ›› Issue (05) : 280 -285. doi: 10.3877/cma.j.issn.2095-2007.2021.05.005

论著

IOLMaster700光学生物测量仪与Pentacam三维眼前节分析仪检测白内障患者眼部参数的临床研究
马山1, 刘秀花1, 姜雅琴1,()   
  1. 1. 261000 潍坊眼科医院白内障科 眼科学国家临床重点专科建设项目单位
  • 收稿日期:2021-03-25 出版日期:2021-10-28
  • 通信作者: 姜雅琴
  • 基金资助:
    国家卫生健康委"十三五"规划全国重点课题(YYWS1609); 潍坊市科技项目(2020YX065)

Comparisons of biometric parameters measurements by Pentacam and IOLMaster700 in cataract patients

Shan Ma1, Xiuhua Liu1, Yaqin Jiang1,()   

  1. 1. National Key Clinical Specialty Construction Project Unit of Ophthalmology, Cataract Department, Weifang Ophthalmology Hospital, Weifang 261000, China
  • Received:2021-03-25 Published:2021-10-28
  • Corresponding author: Yaqin Jiang
引用本文:

马山, 刘秀花, 姜雅琴. IOLMaster700光学生物测量仪与Pentacam三维眼前节分析仪检测白内障患者眼部参数的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(05): 280-285.

Shan Ma, Xiuhua Liu, Yaqin Jiang. Comparisons of biometric parameters measurements by Pentacam and IOLMaster700 in cataract patients[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2021, 11(05): 280-285.

目的

比较IOLMaster700光学生物测量仪与Pentacam三维眼前节分析仪在白内障患者术前检测角膜参数的差异性、相关性及一致性。

方法

前瞻性研究。收集2018年3月至2019年11月就诊于潍坊眼科医院的白内障患者84例(155只眼)。其中,男性38例(69只眼),女性46例(86只眼);年龄33~81岁,平均年龄(59.7±10.5)岁。分别用IOLMaster700光学生物测量仪与Pentacam三维眼前节分析仪检测白内障患者术前的平坦轴角膜曲率(K1)、陡峭轴角膜曲率(K2)、平均角膜曲率(Km)、角膜散光度(△K)、角膜前表面至晶状体前表面前房深度(ACDIOLMaster700)、角膜后表面至晶状体前表面前房深度(AQDIOLMaster700)、角膜前表面至晶状体前表面前房深度[ACD(Ext)Pentacam]、角膜后表面至晶状体前表面前房深度[ACD(Int)Pentacam]及中央角膜厚度(CCT)。K1、K2、Km、△K、ACDIOLMaster700、AQDIOLMaster700、ACD(Ext)Pentacam及ACD(Int)PentacamCCT等资料呈正态分布且方差齐,以±s表示。分别以配对样本t检验、Pearson检验及Bland-Altman检验分析IOLmaster700与simk(15°)及simk(2.5 mm)检测结果的差异性、相关性及一致性。

结果

K1IOLMaster700、K1Pentacam simk(15°)及K1Pentacam simk(2.5 mm)分别为(43.41±1.59)D、(43.46±1.61)D及(43.44±1.61)D,K2IOLMaster700、K2Pentacam simk(15°)及K2Pentacam simk(2.5 mm)分别为(44.24±1.71)D、(44.25±1.72)D及(44.28±1.72)D,KmIOLMaster700、KmPentacam simk(15°)及KmPentacam (2.5 mm)分别为(43.82±1.61)D、(43.85±1.64)D及(43.86±1.63)D,△KIOLMaster700、△KPentacam simk(15°)及△KPentacam simk(2.5 mm)分别为(0.83±0.68)D、(0.80±0.63)D及(0.84±0.64)D,ACDIOLMaster700和ACD(Ext)Pentacam分别为(3.11±0.48)mm和(3.17±0.46)mm,AQDIOLMaster700和ACD(Int)Pentacam分别为(2.58±0.48)mm和(2.64±0.46)mm,CCTIOLMaster700和CCTPentacam分别为(529.39±25.91)μm和(530.35±25.21)μm。ACDIOLMaster700与ACD(Ext)Pentacam、AQDIOLMaster700与(ACD(Int)Pentacam及CCTIOLMaster700和CCTPentacam的差异均无统计学意义(t=-1.555,-1.506,-0.385;P>0.05);IOLMaster700光学生物测量仪与Pentacam三维眼前节分析仪simk(15°)检测的K1、K2、Km及△K比较,其差异均无统计学意义(t=-1.955,-0.223,-1.480,-0.953;P>0.05);IOLMaster700光学生物测量仪与Pentacam三维眼前节分析仪simk(2.5 mm)检测的K1、K2及△K比较,其差异均无统计学意义(t=-1.037,-1.406,-0.324;P>0.05);而Km之间的差异具有统计学意义(t=-2.002,P<0.05)。经Pearson相关性分析,两种设备检测的K1、K2、Km及△K的相关系数分别为0.978、0.979、0.988,0.751,显示具有良好的相关性。Bland-Altman分析结果显示ACDIOLMaster700与ACD(Ext)Pentacam、AQDIOLMaster700与ACD(Int)Pentacam以及两设备检测的CCT差值的平均值及95%LoA范围分别为-0.06 mm(-1.06~-0.94)mm、-0.06 mm(-1.06~-0.94)mm、-1.0 μm(-61.4~-59.5)μm,K1IOLMaster700与K1Pentacam simk(15°)、K2IOLMaster700与K2Pentacam simk(15°)、KmIOLMaster700与KmPentacam simk(15°)、K1IOLMaster700与K1Pentacam simk(2.5 mm)、K2IOLMaster700与K2Pentacam simk(2.5 mm)、KmIOLMaster700与KmPentacam (2.5 mm)、△KIOLMaster700与△KPentacam simk(15°)及△KIOLMaster700与△KPentacam simk(2.5 mm)差值的平均值及95%LoA范围分别为-0.05 D(-0.69~-0.59)D、-0.02 D(-0.68~-0.62)D、-0.01 D(-0.72~-0.71)D、-0.04 D(-0.73~-0.65)D、-0.03 D(-0.53~-0.47)D、-0.04 D(-0.53~-0.45)D、0.03 D(-0.90~-0.83)D及-0.01 D(-0.93~-0.90)D。

结论

IOLMaster700光学生物测量仪与Pentacam三维眼前节分析仪检测患者前房深度和中央角膜厚度的一致性较好,Pentacam三维眼前节分析仪simk(15°)检测的角膜曲率与IOLMaster700光学生物测量仪更接近,Pentacam三维眼前节分析仪simk(2.5 mm)检测的Km与IOLMaster700光学生物测量仪存在差异。

Objective

To assess the difference, correlation and agreement of the biometry parameters measured by Pentacam and IOLmaster700 in cataract patients.

Methods

A . 84 cataract surgery candidates (155 eyes) were enrolled in Weifang Eye Hospital from March, 2018 to November, 2019 and analyzed from a prospective cohort study. There were 38 males(69 eyes)and 46 females(86 eyes)with the mean age of (59.7±10.5) years-old (ranging from 3 to 81 years-old). Keratometry values at the flat (K1) and steep (K2) axis, mean corneal power (Km) and magnitude of corneal astigmatism (△K) and anterior chamber depth from anterior corneal surface to anterior lens surface (ACD), anterior chamber depth from posterior corneal surface to anterior lens surface (AQD), and central corneal thickness (CCT) were examined by IOLMaster 700 and Pentacam. Pentacam takes two range values of simk (15°), simk(2.5 mm). The difference, correlation and consistency of the measurement results of IOLmaster700, simk (15 °) and simk (2.5 mm) were expressed as ±s after normality testing and analyzed by t-test of paired samples and Bland-Altman.

Results

The K1 values measured by IOLMaster700 and Pentacam simk (15 °) and simk (2.5 mm) were (43.41±1.59)D, (43.46±1.61)D, (43.44±1.61)D, respectively; and the K2 values were (44.24±1.71)D, (44.25±1.72)D, (44.28±1.72)D, km values (43.82±1.61)D, (43.85±1.64)D, (43.86±1.63)D, respectively; and △K values were (0.83±0.68) D, (0.80±0.63) D and (0.84±0.64) D, respectively. ACD values measured by IOLMaster700 and Pentacam (Ext) were (3.11±0.48)mm, (3.17±0.46)mm, respectively; and AQD values measured by IOLMaster700 and Pentacam (Int) were (2.58±0.48) mm, (2.64±0.46)mm; the mean CCT values were (529.39±25.91) μm, (530.35±25.21) μm, respectively. There was no significant difference in ACD (Ext), ACD (Int) and CCT between two instruments (t=-1.555, -1.506, -0.385; P>0.05). There was no significant difference in K1, K2, Km, △K between IOLmaster700 and Pentacam simk(15°) (t=-1.955, -0.223, -1.480, -0.953; P>0.05). There was no significant difference in K1, K2 and △K between IOLmaster700 and Pentacam simk (2.5 mm) (t=-1.037, -1.406, -0.324; P>0.05), but there was significant difference between Km (t=-2.002, P<0.05). Pearson correlation analysis showed that there was a good correlation in K1, K2, Km, △K between the results of two instruments (r=0.978, 0.979, 0.988, 0.751; P<0.05). The results of Bland-Altman analysis showed that the average value and 95%LoA range of the difference of ACD (Ext), ACD (Int) and CCT between IOLMaster700 and Pentacam were -0.06 (-1.06—-0.94)mm, -0.06 (-1.06—-0.94)mm and -1.0 (-61.4—-59.5)μm, respectively. The average value and 95%LoA range of the difference of K1, K2, Km, Km, △K between IOLMaster700 and Pentacam simk (15 °) and simk (2.5 mm) were -0.05 (-0.69—-0.59)D, -0.02 (-0.68—-0.62)D, -0.01 (-0.72—-0.71)D, -0.04 (-0.73—-0.65) D, -0.03 (-0.53—-0.47)D, -0.04 (-0.53—-0.45)D, 0.03 (-0.90—-0.83)D and -0.01 (-0.93—-0.90)D, respectively.

Conclusions

IOLMaster700 and Pentacam have good consistency in measuring the parameters of ACD and CCT for cataract patients. The corneal curvature value from pentacam simk (15 °) is closer to IOLmaster700, and the average Km of pentacam simk (2.5 mm) is significantly different from that of IOLmaster700.

表1 IOLMaster700光学生物测量仪与Pentacam三维眼前节分析仪检测患者前房深度及角膜厚度的比较(±s)
表2 IOLMaster700光学生物测量仪与Pentacam三维眼前节分析仪simk(15°)检测角膜曲率及角膜散光度的比较(±s)
表3 IOLMaster700光学生物测量仪与Pentacam三维眼前节分析仪simk2.5mm检测角膜曲率及角膜散光度的比较(±s)
[1]
Li JW, Li YJ, Hu XS, et al. Biosafety of a 3D-printed intraocular lens made of a poly(acrylamide-co-sodium acrylate) hydrogel in vitro and in vivo[J]. Int J Ophthalmol, 2020, 13(10): 1521-1530.
[2]
Dyrda A, Martínez-Palmer A, Martín-Moral D, et al. Clinical Results of Diffractive, Refraices and comparison with the current gold standard biometer[J]. J Cataract Refract Surg, 2011, 37:513-517.
[3]
Kaswin G, Rousseau A, Mgarrech M, et al. Biometry and intraocular lens power calculation results with a new optical biometry device: comparison with the gold standard[J]. J Cataract Refract Surg, 2014, 40: 593-600.
[4]
Akman A, Asena L, Güngör SG. Evaluation and comparison of the new swective, Hybrid Multifocal, and Monofocal Intraocular Lenses[J]. J Ophthalmol, 2018: 8285637.
[5]
Sahin A, Hamrah P. Clinically relevant biometry[J]. Curr Opin Ophthalmol. 2012, 23(1):47-53.
[6]
Chen YA, Hirnschall N, Findl O. Evaluation of 2 new optical biometry devpt source OCT-based IOLMaster 700 with the IOLMaster 500[J]. Br J Ophthalmol, 2016, 100(9): 1201-1205.
[7]
Petermeier K, Gekeler F, Messias A, et al. Intraocular lens power calculation and optimized constants for highly myopic eyes[J]. J Cataract Refract Surg, 2009, 35(9): 1575-1581.
[8]
Sel S, Stange J, Kaiser D, et al. Repeatability and agreement of Scheimpflug-based and swept-source optical biometry measurements[J]. Cont Lens Anterior Eye, 2017, 40(5): 318-322.
[9]
Kunert KS, Peter M, Blum M, et al. Repeatability and agreement in optical biometry of a new swept source optical coherence tomography based biometer versus partial coherence interferometry and optical low coherence reflectometry[J]. J Cataract Refract Surg, 2016, 42(1): 76-83.
[10]
Ishikawa S, Kato N, Takeuchi M. Quantitative evaluation of corneal epithelial edema after cataract surgery using corneal densitometry: a prospective study[J]. BMC Ophthalmol, 2018, 18(1): 334.
[11]
Sheard RM, Smith GT, Cooke DL. Improving the prediction accuracy of the SRK/T formula: the T2 formula[J]. J Cataract Refract Surg, 2010, 36:1829-1834.
[12]
Ladas JG, Siddiqui AA, Devgan U, et al. A 3-D " Super Surface" Combining Modern Intraocular Lens Formulas to Generate a " Super Formula" and Maximize Accuracy[J]. JAMA Ophthalmol, 2015, 133:1431-1436.
[13]
Hoffer KJ, Savini G. Clinical Results of the Hoffer H-5 Formula in 2707 Eyes: First 5th-generation Formula Based on Gender and Race[J]. Int Ophthalmol Clin, 2017, 57:213-219.
[14]
Saad E, Shammas MC, Shammas HJ. Scheimpflug corneal power measurements for intraocular lens power calculation in cataract surgery[J]. Am J Ophthalmol, 2013, 156(3): 460-467.
[15]
Dehnavi Z, Khabazkhoob M, Mirzajani A, et al. Comparison of the Corneal Power Measurements with the TMS4-Topographer, Pentacam HR, IOL Master, and Javal Keratometer[J]. Middle East Afr J Ophthalmol, 2015, 22(2): 233-237.
[16]
王子杨,杨文利,李栋军,等. 新型生物测量仪Pentacam AXL、IOLMaster 700与IOLMaster 500对白内障眼部生物学参数测量的比较[J].中华眼科杂志201955(7): 515-521.
[17]
Savini G, Barboni P, Carbonelli M, et al. Accuracy of Scheimpflug corneal power measurements for intraocular lens power calculation[J]. J Cataract Refract Surg, 2009, 35(7): 1193-1197.
[18]
Elbaz U, Barkana Y, Gerber Y, et al. Comparison of different techniques of anterior chamber depth and keratometric measurements[J]. Am J Ophthalmol, 2007, 143(1): 48-53.
[19]
Symes RJ, Ursell PG. Automated keratometry in routine cataract surgery: comparison of Scheimpflug and conventional values[J]. J Cataract Refract Surg, 2011, 37(2): 295-301.
[20]
Eibschitz-Tsimhoni M, Tsimhoni O, Archer SM, et al. Effect of axial length and keratometry measurement error on intraocular lens implant power prediction formulas in pediatric patients[J]. J AAPOS, 2008, 12(2): 173-176.
[21]
武静,高鹏,范建武,等. Verion数字导航系统与IOLMaster700、Pentacam白内障摘除手术前测量角膜散光的比较研究[J]. 中华眼科杂志202056(1): 47-52.
[22]
Day AC, Dhariwal M, Keith MS, et al. Distribution of preoperative and postoperative astigmatism in a large population of patients undergoing cataract surgery in the UK[J]. Br J Ophthalmol, 2019, 103(7): 993-1000.
[23]
Thibos LN, Wheeler W, Horner D. Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error[J]. Optom Vis Sci, 1997, 74(6): 367-375.
[24]
Su PF, Lo AY, Hu CY, et al. Anterior chamber depth measurement in phakic and pseudophakic eyes[J]. Optom VisSci, 2008, 85(12): 1193-1200.
[25]
Shajari M, Cremonese C, Petermann K, et al. Comparison of Axial Length, Corneal Curvature, and Anterior Chamber Depth Measurements of 2 Recently Introduced Devices to a Known Biometer[J]. American Journal of Ophthalmology, 2017, 178 : 58-64.
[26]
Özyol P, Özyol E. Agreement Between Swept-Source Optical Biometry and Scheimpflug-based Topography Measurements of Anterior Segment Parameters[J]. Am J Ophthalmol, 2016, 169:73-78.
[1] 陈川, 罗红. 胎儿先天性白内障的超声影像学特征及预后分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 548-552.
[2] 孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华. 关注后发性白内障的发病机制及防控措施[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 193-198.
[3] 陈灏楠, 肖伟. 透明角膜切口对白内障术后角膜散光的影响及其精准测量的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 172-176.
[4] 方蕊, 宋旭东. 非编码核糖核酸与白内障相关的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 94-98.
[5] 郝壮, 马济远, 何梦梅, 李兴育, 陆新婷, 武静, 周健. 迟发性囊袋阻滞综合征临床特征、治疗方法及其疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 70-75.
[6] 刘兆川, 宋旭东. 重视虹膜松弛综合征围手术期的防治[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 1-5.
[7] 万修华. 角膜移植术后白内障吸除联合张力环及后房型人工晶状体植入术[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 0-.
[8] 王震宇, 张维嘉, 胡曼, 高传文, 石砚, 王怀洲. 微导管辅助360°小梁切开术治疗先天性白内障术后继发青光眼的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 275-280.
[9] 万修华. 白内障标准化手术系列视频(5级全白核)[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 0-.
[10] 王晓宇, 李亚新, 刘一昀, 耿嘉懿, 秦锐, 李炎城, 敖明昕, 刘德海, 齐虹. 不同设计多焦点人工晶状体植入后视觉质量差异的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 210-215.
[11] 姜雅琴, 刘丽峰, 刘秀花, 张亚丽. 白内障术后早期患者配戴绷带镜对泪膜质量及其动态变化影响的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 204-209.
[12] 蒋晨, 万新娟, 谢小东, 丁琳. 糖化血红蛋白、硫氧还蛋白、硫氧还蛋白互作蛋白与皮质性白内障的关系[J]. 中华临床医师杂志(电子版), 2022, 16(09): 914-918.
[13] 付鹏, 沈念, 黄艳玲, 杨水平, 万小波. 外伤性晶状体脱位合并周边隐匿性视网膜病变的临床特征及预后分析[J]. 中华临床医师杂志(电子版), 2022, 16(06): 536-540.
[14] 彭丽, 于娜, 吴雪莲. 老年白内障患者超声乳化术后眼部疼痛原因分析[J]. 中华老年病研究电子杂志, 2023, 10(02): 49-51.
[15] 刘天龙. 改良型超声乳化手术治疗高度近视合并白内障疗效观察[J]. 中华老年病研究电子杂志, 2023, 10(01): 30-33.
阅读次数
全文


摘要